Skip to main content
Log in

Efficient polysulfide anchor: brain coral-like WS2 nanosheets

  • Energy materials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Controlling the inherent polysulfide shuttle process has been the key research topic to solve the irreversible capacity loss problem of Li–S battery. By skillfully designing, hierarchical brain coral-like WS2 nanosheets are synthesized. The novel structure is consisted of WS2 nanosheets arrayed along the same crystal plane, which expose a large number of adsorption active sites and enhance the adsorption of polysulfides. At the same time, the multilayer sheet structure has a large specific surface area and increases the sulfur loading. The brain coral-like WS2/S cathode exhibits excellent electrochemical properties, which delivers an initial discharge specific capacity of 1308 mAh g−1 at 0.1 C. And when cycles at 2 C, the discharge specific capacity is maintained at 721 mAh g−1 after 500 cycles, together with a low decay of 0.06% per cycle.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Evers S, Nazar LF (2013) New approaches for high energy density lithium–sulfur battery cathodes. Acc Chem Res 46(9):1135–1143

    CAS  Google Scholar 

  2. Yin YX, Xin S, Guo YG, Wan LJ (2013) Lithium–sulfur batteries: electrochemistry, materials, and prospects. Angew Chem Int Ed Engl 52(50):13186

    CAS  Google Scholar 

  3. Yao YX, Zhang XQ, Li BQ et al (2020) A compact inorganic layer for robust anode protection in lithium–sulfur batteries. InfoMat 2(2):379–388

    Google Scholar 

  4. Chen L, Shaw LL (2014) Recent advances in lithium–sulfur batteries. J Power Sources 267:770–783

    CAS  Google Scholar 

  5. Chen W, Lei T, Wu C et al (2018) Designing safe electrolyte systems for a high-stability lithium–sulfur battery. Adv Energy Mater 8:1702348

    Google Scholar 

  6. Pang Q, Liang X, Kwok CY, Nazar LF (2015) The importance of chemical interactions between sulfur host materials and lithium polysulfides for advanced lithium–sulfur batteries. J Electrochem Soc 162(14):A2567–A2576

    CAS  Google Scholar 

  7. Nagao M, Imade Y, Narisawa H et al (2013) Reaction mechanism of all-solid-state lithium–sulfur battery with two-dimensional mesoporous carbon electrodes. J Power Sources 243:60–64

    CAS  Google Scholar 

  8. Ji X, Nazar LF (2010) Advances in Li–S batteries. J Mater Chem 20(44):9821

    CAS  Google Scholar 

  9. Lei T, Chen W, Hu Y et al (2018) A nonflammable and thermotolerant separator suppresses polysulfide dissolution for safe and long-cycle lithium–sulfur batteries. Adv Energy Mater 32:1802441

    Google Scholar 

  10. Mikhaylik YV, Akridge JR (2004) Polysulfide shuttle study in the Li/S battery system. J Electrochem Soc 151(11):A1969–A1976

    CAS  Google Scholar 

  11. Diao Y, Xie K, Xiong S, Hong X (2012) Analysis of polysulfide dissolved in electrolyte in discharge-charge process of Li–S battery. J Electrochem Soc 159(4):A421–A425

    CAS  Google Scholar 

  12. Zhang C, Wu HB, Yuan C, Guo Z, Lou XW (2012) Confining sulfur in double-shelled hollow carbon spheres for lithium–sulfur batteries. Angew Chem Int Ed 51(38):9592–9595

    CAS  Google Scholar 

  13. Chen W, Hu Y, Lv W et al (2019) Lithiophilic montmorillonite serves as lithium ion reservoir to facilitate uniform lithium deposition. Nat Commun 10:4973

    Google Scholar 

  14. Xin S, Gu L, Zhao NH et al (2012) Smaller sulfur molecules promise better lithium–sulfur batteries. J Am Chem Soc 134(45):18510–18513

    CAS  Google Scholar 

  15. Duan B, Wang W, Wang A et al (2013) Carbyne polysulfide as a novel cathode material for lithium/sulfur batteries. J Mater Chem A 1(42):13261

    CAS  Google Scholar 

  16. Xu K (2014) Electrolytes and interphases in Li-ion batteries and beyond. Chem Rev 114(23):11503–11618

    CAS  Google Scholar 

  17. Li Z, Yuan L, Yi Z et al (2014) Insight into the electrode mechanism in lithium–sulfur batteries with ordered microporous carbon confined sulfur as the cathode. Adv Energy Mater 4:1301473

    Google Scholar 

  18. Li BQ, Kong L, Zhao CX et al (2019) Expediting redox kinetics of sulfur species by atomic-scale electrocatalysts in lithium–sulfur batteries. InfoMat 1(4):533–541

    Google Scholar 

  19. Zhou H, Wang D, Fu A et al (2018) Mesoporous carbon spheres with tunable porosity prepared by a template-free method for advanced lithium–sulfur batteries. Mate Sci and Eng B 227:9–15

    CAS  Google Scholar 

  20. Sun X, Huang Y, Chen M, Wang Y, Gao X, Wang L (2018) Novel microporous carbon prepared from discarded clothes as host materials for high performance lithium–sulfur battery. Mater Lett 232:122–125

    CAS  Google Scholar 

  21. Ma S, Wang L, Wang Y et al (2019) Palladium nanocrystals-imbedded mesoporous hollow carbon spheres with enhanced electrochemical kinetics for high performance lithium sulfur batteries. Carbon 143:878–889

    CAS  Google Scholar 

  22. Liu J, Zhang W, Chen Y, Zhou P, Zhang K (2019) A novel biomimetic dandelion structure-inspired carbon nanotube coating with sulfur as a lithium–sulfur battery cathode. Nanotechnology 30(15):155401

    CAS  Google Scholar 

  23. Benítez A, Caballero A, Morales J, Hassoun J, Rodríguez-Castellón E, Canales-Vázquez J (2019) Physical activation of graphene: an effective, simple and clean procedure for obtaining microporous graphene for high-performance Li/S batteries. Nano Res 12(4):759–766

    Google Scholar 

  24. Zhao Q, Zhao K, Ji G et al (2019) High sulfur loading, rGO-linked and polymer binder-free cathodes based on rGO wrapped N, P-codoped mesoporous carbon as sulfur host for Li–S batteries. Chem Eng J 361:1043–1052

    CAS  Google Scholar 

  25. Cavallo C, Agostini M, Genders JP, Abdelhamid ME, Matic A (2019) A free-standing reduced graphene oxide aerogel as supporting electrode in a fluorine-free Li2S8 catholyte Li–S battery. J Power Sources 416:111–117

    CAS  Google Scholar 

  26. Kim J, Kang Y, Song S-W, Suk J (2019) Freestanding sulphur–graphene oxide/carbon composite paper as a stable cathode for high performance lithium–sulfur batteries. Electrochim Acta 299:27–33

    CAS  Google Scholar 

  27. Lei T, Chen W, Lv W et al (2018) Inhibiting polysulfide shuttling with a graphene composite separator for highly robust lithium–sulfur batteries. Joule 2:2091

    CAS  Google Scholar 

  28. Liu Q, Jiang Q, Jiang L et al (2018) Preparation of SnO2@rGO/CNTs/S composite and application for lithium–sulfur battery cathode material. App Surf Sci 462:393–398

    CAS  Google Scholar 

  29. Tu S, Zhao X, Cheng M, Sun P, He Y, Xu Y (2019) Uniform mesoporous MnO2 nanospheres as a surface chemical adsorption and physical confinement polysulfide mediator for lithium–sulfur batteries. ACS Appl Mater Interfaces 11(11):10624–10630

    CAS  Google Scholar 

  30. Cui Z, Yao J, Mei T et al (2019) Strong lithium polysulfides chemical trapping of TiC–TiO2/S composite for long-cycle lithium–sulfur batteries. Electrochim Acta 298:43–51

    CAS  Google Scholar 

  31. Zhu L, Yang C, Chen Y, Wang J, Wang C, Zhu X (2019) Lithium storage performance and mechanism of VS4/rGO as an electrode material associated with lithium–sulfur batteries. J Alloys Compd 785:855–861

    CAS  Google Scholar 

  32. Yuan Z, Peng HJ, Hou TZ et al (2016) Powering lithium–sulfur battery performance by propelling polysulfide redox at sulfiphilic hosts. Nano Lett 16(1):519–527

    CAS  Google Scholar 

  33. Li T, Guo R, Luo Y et al (2018) Innovative N-doped graphene-coated WS2 nanosheets on graphene hollow spheres anode with double-sided protective structure for Li-ion storage. Electrochim Acta 290:128–141

    CAS  Google Scholar 

  34. Xiao Z, Yang Z, Zhou L, Zhang L, Wang R (2017) Highly conductive porous transition metal dichalcogenides via water steam etching for high-performance lithium–sulfur batteries. ACS Appl Mater Interfaces 9(22):18845–18855

    CAS  Google Scholar 

  35. Majumder S, Shao M, Deng Y, Chen G (2019) Two dimensional WS2/C nanosheets as a polysulfides immobilizer for high performance lithium–sulfur batteries. J Electrochem Soc 166(3):A5386–A5396

    CAS  Google Scholar 

  36. Lei T, Chen W, Huang J et al (2017) Multi-functional layered WS2 nanosheets for enhancing the performance of lithium–sulfur batteries. Adv Energy Mater 7(4):1601843

    Google Scholar 

  37. Babu G, Masurkar N, Al Salem H, Arava LM (2017) Transition metal dichalcogenide atomic layers for lithium polysulfides electrocatalysis. J Am Chem Soc 139(1):171–178

    CAS  Google Scholar 

  38. Huang S, Wang Y, Hu J et al (2018) Mechanism investigation of high-performance Li-polysulfide batteries enabled by tungsten disulfide nanopetals. ACS Nano 12(9):9504–9512

    CAS  Google Scholar 

  39. Thangavel NK, Gopalakrishnan D, Arava LMR (2017) Understanding heterogeneous electrocatalysis of lithium polysulfide redox on Pt and WS2 surfaces. J Phys Chem C 121(23):12718–12725

    CAS  Google Scholar 

  40. Fu X, Qian J, Qiao X, Tan P, Peng Z (2014) Nonlinear saturable absorption of vertically stood WS2 nanoplates. Opt Lett 39(22):6450–6453

    CAS  Google Scholar 

  41. Sarma PV, Tiwary CS, Radhakrishnan S, Ajayan PM, Shaijumon MM (2018) Oxygen incorporated WS2 nanoclusters with superior electrocatalytic properties for hydrogen evolution reaction. Nanoscale 10(20):9516–9524

    CAS  Google Scholar 

  42. Liu S, Shen B, Niu Y, Xu M (2017) Fabrication of WS2-nanoflowers@rGO composite as an anode material for enhanced electrode performance in lithium-ion batteries. J Colloid Interface Sci 488:20–25

    CAS  Google Scholar 

  43. Qin Z, Ouyang C, Zhang J et al (2017) 2D WS2 nanosheets with TiO2 quantum dots decoration for high-performance ammonia gas sensing at room temperature. Sens Actuators B Chem 253:1034–1042

    CAS  Google Scholar 

  44. Feng C, Tang L, Deng Y et al (2020) Synthesis of branched WO3@W18O49 homojunction with enhanced interfacial charge separation and full-spectrum photocatalytic performance. Chem Eng J 389:124474

    CAS  Google Scholar 

  45. Patel MU, Demir-Cakan R, Morcrette M, Tarascon JM, Gaberscek M, Dominko R (2013) Li–S battery analyzed by UV/Vis in operando mode. ChemSusChem 6(7):1177–1181. https://doi.org/10.1002/cssc.201300142

    Article  CAS  Google Scholar 

  46. Yao J, Mei T, Cui Z, Yu Z, Xu K, Wang X (2017) Hollow carbon spheres with TiO2 encapsulated sulfur and polysulfides for long-cycle lithium–sulfur batteries. Chem Eng J 330:644–650

    CAS  Google Scholar 

  47. Cui Z, Mei T, Yao J et al (2018) Cabbage-like nitrogen-doped graphene/sulfur composite for lithium–sulfur batteries with enhanced rate performance. J Alloys Compd 753:622–629

    CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the Hubei Provincial Department of Science and Technology (Grant No. 2018CFB103), Ministry of Science and Technology of China (Grant No. 2016YFA0200200) and the National Natural Science Foundation of China (Grant No. 51673060, 11574075).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jingwen Qian or Xianbao Wang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1640 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xiong, M., Qian, J., Yang, K. et al. Efficient polysulfide anchor: brain coral-like WS2 nanosheets. J Mater Sci 55, 12031–12040 (2020). https://doi.org/10.1007/s10853-020-04760-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-020-04760-x

Navigation