Skip to main content
Log in

Effect of the heat treatment temperature on mechanical and electrochemical properties of polyimide separator for lithium ion batteries

  • Chemical routes to materials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

In order to solve the shortcomings of the current traditional commercial polyolefin microporous membranes with worse thermostability at high temperature, polyimide (PI) nanofiber membranes prepared by electrospinning are promising separators for lithium ion batteries that operate at high temperatures. This preparation includes the forming process of poly(amic acid) (PAA) fibers membrane and thermal-imidization process. In this study, we design the experiment of thermal-imidization for PAA fibers to improve the mechanical strength and the electrochemical performance of the obtained PI nanofiber membrane. It is found that the degradation phenomenon and the crosslinking function occur after the imidization during the heat treatment. The mechanical strength of PI nanofiber membrane gets improved with new crosslinking system after being heat-treated at 350 °C. LiCoO2/Li cells based on such PI nanofiber membranes exhibit excellent cycle performance (300 cycles) and rate performance (even at high rates of 6 C), better than those employing polyolefin microporous membranes.

Graphic abstract

During the heat treatment of polyamic acid, a thermal imidization process will occur. At the same time, different heat treatment temperatures will lead to differences in the degree of imidization and the structure of the fiber membrane material. It is important to understand the thermal imidization process. The effect of thermal imidization temperature on the performance of the electrospun polyimide lithium ion battery separator is studied. The experimental results show that although the degree of imidization is decreased by the heat treatment at 350 °C, it has better cycle performance (300 circles) and rate performance (even at high rates of 6 C).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme1
Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Armand M, Tarascon JM (2008) Building better batteries. Nature 451(7179):652–657. https://doi.org/10.1038/451652a

    Article  CAS  Google Scholar 

  2. Goodenough JB, Park KS (2013) The Li-ion rechargeable battery: a perspective. J Am Chem Soc 135(4):1167–1176. https://doi.org/10.1021/ja3091438

    Article  CAS  Google Scholar 

  3. Lee H, Yanilmaz M, Toprakci O, Fu K, Zhang X (2014) A review of recent developments in membrane separators for rechargeable lithium-ion batteries. Energy Environ Sci 7(12):3857–3886. https://doi.org/10.1039/c4ee01432d

    Article  CAS  Google Scholar 

  4. Venugopal G, Moore J, Howard J, Pendalwar S (1999) Characterization of microporous separators for lithium-ion batteries. J Power Sources 77(1):34–41. https://doi.org/10.1016/s0378-7753(98)00168-2

    Article  CAS  Google Scholar 

  5. Gong H, Wang T, Xue H, Fan X, Gao B, Zhang H, Shi L, He J, Ye J (2018) Photo-enhanced lithium oxygen batteries with defective titanium oxide as both photo-anode and air electrode. Energy Storage Mater 13:49–56. https://doi.org/10.1016/j.ensm.2017.12.025

    Article  Google Scholar 

  6. Zhong G, Wang Y, Wang C, Wang Z, Guo S, Wang L, Liang X, Xiang H (2018) An AlOOH-coated polyimide electrospun fibrous membrane as a high-safety lithium-ion battery separator. Ionics 25(6):2677–2684. https://doi.org/10.1007/s11581-018-2716-y

    Article  CAS  Google Scholar 

  7. Gao Z, Sun H, Fu L, Ye F, Zhang Y, Luo W, Huang Y (2018) Promises, challenges, and recent progress of inorganic solid-state electrolytes for all-solid-state lithium batteries. Adv Mater 30(17):1705702. https://doi.org/10.1002/adma.201705702

    Article  CAS  Google Scholar 

  8. Arora P, Zhang ZJ (2004) Battery separators. Chem Rev 104(10):4419–4462. https://doi.org/10.1021/cr020738u

    Article  CAS  Google Scholar 

  9. Huang X (2010) Separator technologies for lithium-ion batteries. J Solid State Electrochem 15(4):649–662. https://doi.org/10.1007/s10008-010-1264-9

    Article  CAS  Google Scholar 

  10. Gong H, Xue H, Gao B, Li Y, Fan X, Zhang S, Wang T, He J (2020) Introduction of photo electrochemical water-oxidation mechanism into hybrid lithium–oxygen batteries. Energy Storage Mater. https://doi.org/10.1016/j.ensm.2020.05.014

    Article  Google Scholar 

  11. Schadeck U, Kyrgyzbaev K, Gerdes T, Willert-Porada M, Moos R (2018) Porous and non-porous micrometer-sized glass platelets as separators for lithium-ion batteries. J Membr Sci 550:518–525. https://doi.org/10.1016/j.memsci.2017.10.061

    Article  CAS  Google Scholar 

  12. Jiang W, Liu Z, Kong Q, Yao J, Zhang C, Han P, Cui G (2013) A high temperature operating nanofibrous polyimide separator in Li-ion battery. Solid State Ion 232:44–48. https://doi.org/10.1016/j.ssi.2012.11.010

    Article  CAS  Google Scholar 

  13. Bansal D, Meyer B, Salomon M (2008) Gelled membranes for Li and Li-ion batteries prepared by electrospinning. J Power Sources 178(2):848–851. https://doi.org/10.1016/j.jpowsour.2007.07.070

    Article  CAS  Google Scholar 

  14. Choi J-A, Kim SH, Kim D-W (2010) Enhancement of thermal stability and cycling performance in lithium-ion cells through the use of ceramic-coated separators. J Power Sources 195(18):6192–6196. https://doi.org/10.1016/j.jpowsour.2009.11.020

    Article  CAS  Google Scholar 

  15. Dong X, Mi W, Yu L, Jin Y, Lin YS (2016) Zeolite coated polypropylene separators with tunable surface properties for lithium-ion batteries. Microporous Mesoporous Mater 226:406–414. https://doi.org/10.1016/j.micromeso.2016.02.006

    Article  CAS  Google Scholar 

  16. Shi C, Dai J, Li C, Shen X, Peng L, Zhang P, Wu D, Sun D, Zhao J (2017) A modified ceramic-coating separator with high-temperature stability for lithium-ion battery. Polymers (Basel) 9(5):159. https://doi.org/10.3390/polym9050159

    Article  CAS  Google Scholar 

  17. Shi C, Zhu J, Shen X, Chen F, Ning F, Zhang H, Long Y-Z, Ning X, Zhao J (2018) Flexible inorganic membranes used as a high thermal safety separator for the lithium-ion battery. RSC Adv 8(8):4072–4077. https://doi.org/10.1039/c7ra13058a

    Article  CAS  Google Scholar 

  18. Yu L, Jin Y, Lin YS (2016) Ceramic coated polypropylene separators for lithium-ion batteries with improved safety: effects of high melting point organic binder. RSC Adv 6(46):40002–40009. https://doi.org/10.1039/c6ra04522g

    Article  CAS  Google Scholar 

  19. Wang Z, Xiang H, Wang L, Xia R, Nie S, Chen C, Wang H (2018) A paper-supported inorganic composite separator for high-safety lithium-ion batteries. J Membr Sci 553:10–16. https://doi.org/10.1016/j.memsci.2018.02.040

    Article  CAS  Google Scholar 

  20. Wang X, Xu G, Wang Q, Lu C, Zong C, Zhang J, Yue L, Cui G (2018) A phase inversion based sponge-like polysulfonamide/SiO2 composite separator for high performance lithium-ion batteries. Chin J Chem Eng 26(6):1292–1299. https://doi.org/10.1016/j.cjche.2017.12.010

    Article  CAS  Google Scholar 

  21. Li D, Qin D, Nie F, Wen L, Xue L (2018) Enhancement of electrochemical performance of lithium-ion battery by single-ion conducting polymer addition in ceramic-coated separator. J Mater Sci 53(15):11038–11049. https://doi.org/10.1007/s10853-018-2353-x

    Article  CAS  Google Scholar 

  22. Yanilmaz M, Zhu J, Lu Y, Ge Y, Zhang X (2017) High-strength, thermally stable nylon 6,6 composite nanofiber separators for lithium-ion batteries. J Mater Sci 52(9):5232–5241. https://doi.org/10.1007/s10853-017-0764-8

    Article  CAS  Google Scholar 

  23. Wang D, Yu J, Duan G, Liu K, Hou H (2020) Electrospun polyimide nonwovens with enhanced mechanical and thermal properties by addition of trace plasticizer. J Mater Sci 55(13):5667–5679. https://doi.org/10.1007/s10853-020-04402-2

    Article  CAS  Google Scholar 

  24. Lee YM, Kim J-W, Choi N-S, Lee JA, Seol W-H, Park J-K (2005) Novel porous separator based on PVdF and PE non-woven matrix for rechargeable lithium batteries. J Power Sources 139(1–2):235–241. https://doi.org/10.1016/j.jpowsour.2004.06.055

    Article  CAS  Google Scholar 

  25. Liaw D-J, Wang K-L, Huang Y-C, Lee K-R, Lai J-Y, Ha C-S (2012) Advanced polyimide materials: Syntheses, physical properties and applications. Prog Polym Sci 37(7):907–974. https://doi.org/10.1016/j.progpolymsci.2012.02.005

    Article  CAS  Google Scholar 

  26. Zhu C, Nagaishi T, Shi J, Lee H, Wong PY, Sui J, Hyodo K, Kim IS (2017) Enhanced wettability and thermal stability of a novel polyethylene terephthalate-based poly(vinylidene fluoride) nanofiber hybrid membrane for the separator of lithium-ion batteries. ACS Appl Mater Interfaces 9(31):26400–26406. https://doi.org/10.1021/acsami.7b06303

    Article  CAS  Google Scholar 

  27. Elia GA, Ducros JB, Sotta D, Delhorbe V, Brun A, Marquardt K, Hahn R (2017) Polyacrylonitrile separator for high-performance aluminum batteries with improved interface stability. ACS Appl Mater Interfaces 9(44):38381–38389. https://doi.org/10.1021/acsami.7b09378

    Article  CAS  Google Scholar 

  28. Hao J, Lei G, Li Z, Wu L, Xiao Q, Wang L (2013) A novel polyethylene terephthalate nonwoven separator based on electrospinning technique for lithium ion battery. J Membr Sci 428:11–16. https://doi.org/10.1016/j.memsci.2012.09.058

    Article  CAS  Google Scholar 

  29. Pan J-L, Zhang Z, Zhang H, Zhu P-P, Wei J-C, Cai J-X, Yu J, Koratkar N, Yang Z-Y (2018) Ultrathin and strong electrospun porous fiber separator. ACS Appl Energy Mater 1(9):4794–4803. https://doi.org/10.1021/acsaem.8b00855

    Article  CAS  Google Scholar 

  30. Kim JK, Kim DH, Joo SH, Choi B, Cha A, Kim KM, Kwon TH, Kwak SK, Kang SJ, Jin J (2017) Hierarchical chitin fibers with aligned nanofibrillar architectures: a nonwoven-mat separator for lithium metal batteries. ACS Nano 11(6):6114–6121. https://doi.org/10.1021/acsnano.7b02085

    Article  CAS  Google Scholar 

  31. Huang C, Wang S, Zhang H, Li T, Chen S, Lai C, Hou H (2006) High strength electrospun polymer nanofibers made from BPDA–PDA polyimide. Eur Polym J 42(5):1099–1104. https://doi.org/10.1016/j.eurpolymj.2005.11.005

    Article  CAS  Google Scholar 

  32. Miao Y-E, Zhu G-N, Hou H, Xia Y-Y, Liu T (2013) Electrospun polyimide nanofiber-based nonwoven separators for lithium-ion batteries. J Power Sources 226:82–86. https://doi.org/10.1016/j.jpowsour.2012.10.027

    Article  CAS  Google Scholar 

  33. Raghavan P, Lim D-H, Ahn J-H, Nah C, Sherrington DC, Ryu H-S, Ahn H-J (2012) Electrospun polymer nanofibers: the booming cutting edge technology. React Funct Polym 72(12):915–930. https://doi.org/10.1016/j.reactfunctpolym.2012.08.018

    Article  CAS  Google Scholar 

  34. Wang Q, Song W-L, Wang L, Song Y, Shi Q, Fan L-Z (2014) Electrospun polyimide-based fiber membranes as polymer electrolytes for lithium-ion batteries. Electrochim Acta 132:538–544. https://doi.org/10.1016/j.electacta.2014.04.053

    Article  CAS  Google Scholar 

  35. Dai J, Shi C, Li C, Shen X, Peng L, Wu D, Sun D, Zhang P, Zhao J (2016) A rational design of separator with substantially enhanced thermal features for lithium-ion batteries by the polydopamine–ceramic composite modification of polyolefin membranes. Energy Environ Sci 9(10):3252–3261. https://doi.org/10.1039/c6ee01219a

    Article  CAS  Google Scholar 

  36. Ju J, Wang Q, Wang T, Wang C (2013) Low dielectric, nanoporous fluorinated polyimide films prepared from PCL-PI-PCL triblock copolymer using retro-Diels–Alder reaction. J Colloid Interface Sci 404:36–41. https://doi.org/10.1016/j.jcis.2013.04.014

    Article  CAS  Google Scholar 

  37. Vanherck K, Koeckelberghs G, Vankelecom IFJ (2013) Crosslinking polyimides for membrane applications: a review. Prog Polym Sci 38(6):874–896. https://doi.org/10.1016/j.progpolymsci.2012.11.001

    Article  CAS  Google Scholar 

  38. Zhang H, Sheng L, Bai Y, Song S, Liu G, Xue H, Wang T, Huang X, He J (2020) Amino-functionalized Al2O3 particles coating separator with excellent lithium ion transport properties for a high-power density lithium-ion battery. Adv Eng Mater. https://doi.org/10.1002/adem.201901545

    Article  Google Scholar 

  39. Dong G, Dong N, Liu B, Tian G, Qi S, Wu D (2020) Ultrathin inorganic-nanoshell encapsulation: TiO2 coated polyimide nanofiber membrane enabled by layer-by-layer deposition for advanced and safe high-power LIB separator. J Membr Sci. https://doi.org/10.1016/j.memsci.2020.117884

    Article  Google Scholar 

  40. Ooms FGB, Kelder EM, Schoonman J, Gerrits N, Smedinga J, Calis G (2001) Performance of Solupor® separator materials in lithium ion batteries. J Power Sources 97–98:598–601. https://doi.org/10.1016/s0378-7753(01)00538-9

    Article  Google Scholar 

Download references

Acknowledgements

This author was grateful for the financial support from the National Natural Science Foundation of China (11575084 and 51602153), the Natural Science Foundation of Jiangsu Province (BK20160795) and A Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianping He.

Ethics declarations

Conflict of interest

All authors declare that they have no conflicts of interest.

Additional information

Handling Editor: Yaroslava Yingling.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOC 1095 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, M., Sheng, L., Zhang, H. et al. Effect of the heat treatment temperature on mechanical and electrochemical properties of polyimide separator for lithium ion batteries. J Mater Sci 55, 16158–16170 (2020). https://doi.org/10.1007/s10853-020-05197-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-020-05197-y

Navigation