Skip to main content
Erschienen in: Journal of Materials Science 13/2021

08.01.2021 | Energy materials

Enhanced photoelectrochemical water oxidation of WO3/R-CoO and WO3/B-CoO photoanodes with a type II heterojunction

verfasst von: Jiali Liu, Qiang Yang, Jikai Liu, He’an Luo

Erschienen in: Journal of Materials Science | Ausgabe 13/2021

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Tungsten trioxide (WO3) has been conceived as a promising photoanode material for photoelectrochemical (PEC) water oxidation. Therefore, many efforts have been made to improve its PEC performances. Herein, a novel heterojunction is fabricated through combining rocksalt CoO (R-CoO) or blende CoO (B-CoO) nanosheets with WO3 nanoplates using a spin-coating method. The typical type II heterojunctions, e.g., WO3/R-CoO and WO3/B-CoO, both have exhibited higher photocurrent densities than pristine WO3 photoanode. The photocurrent densities of WO3/R-CoO, WO3/B-CoO and WO3 are 0.53 mA cm−2, 0.45 mA cm−2 and 0.31 mA cm−2 at 1.23 V vs. reversible hydrogen electrode, respectively. For the WO3/R-CoO photoanode, the surface charge separation efficiency is 50.95% and the photoconversion efficiency is 0.062%, which are both higher than the WO3 and WO3/B-CoO photoanodes. The enhanced PEC performances are due to the type II heterojunction between WO3 and R-CoO (or B-CoO), which facilitates the absorption of visible light and charge transport. The better performance of WO3/R-CoO than that of WO3/B-CoO may be due to the deeper valence band position of R-CoO. Our work demonstrates that R-CoO (or B-CoO) can couple with WO3 to form a type II heterojunction to improve the PEC water oxidation performance.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
3.
Zurück zum Zitat Kudo A, Miseki Y (2009) Heterogeneous photocatalyst materials for water splitting. Chem Soc Rev 38:253–278 Kudo A, Miseki Y (2009) Heterogeneous photocatalyst materials for water splitting. Chem Soc Rev 38:253–278
4.
Zurück zum Zitat Wang Q, Domen K (2019) Particulate photocatalysts for light-driven water splitting: mechanisms, challenges, and design strategies. Chem Rev 120:919–985 Wang Q, Domen K (2019) Particulate photocatalysts for light-driven water splitting: mechanisms, challenges, and design strategies. Chem Rev 120:919–985
5.
Zurück zum Zitat Fujishima A, Honda K (1972) Electrochemical photolysis of water at a semiconductor electrode. Nature 238:37–38 Fujishima A, Honda K (1972) Electrochemical photolysis of water at a semiconductor electrode. Nature 238:37–38
6.
Zurück zum Zitat Yan D, Fu X, Shang Z, Liu J, Luo H (2019) A BiVO4 film photoanode with re-annealing treatment and 2D thin Ti3C2TX flakes decoration for enhanced photoelectrochemical water oxidation. Chem Eng J 361:853–861 Yan D, Fu X, Shang Z, Liu J, Luo H (2019) A BiVO4 film photoanode with re-annealing treatment and 2D thin Ti3C2TX flakes decoration for enhanced photoelectrochemical water oxidation. Chem Eng J 361:853–861
7.
Zurück zum Zitat Lee DK, Choi KS (2018) Enhancing long-term photostability of BiVO4 photoanodes for solar water splitting by tuning electrolyte composition. Nat Energy 3:53–60 Lee DK, Choi KS (2018) Enhancing long-term photostability of BiVO4 photoanodes for solar water splitting by tuning electrolyte composition. Nat Energy 3:53–60
8.
Zurück zum Zitat Chang H, Shang Z, Kong Q, Liu P, Liu J, Luo H (2019) α-Fe2O3 nanorods embedded with two-dimensional 0 0 1 facets exposed TiO2 flakes derived from Ti3C2TX MXene for enhanced photoelectrochemical water oxidation. Chem Eng J 370:314–321 Chang H, Shang Z, Kong Q, Liu P, Liu J, Luo H (2019) α-Fe2O3 nanorods embedded with two-dimensional 0 0 1 facets exposed TiO2 flakes derived from Ti3C2TX MXene for enhanced photoelectrochemical water oxidation. Chem Eng J 370:314–321
9.
Zurück zum Zitat Yan D, Liu J, Shang Z, Luo H (2017) Ti-doped α-Fe2O3 nanorods with controllable morphology by carbon layer coating for enhanced photoelectrochemical water oxidation. Dalton Trans 46:10558–10563 Yan D, Liu J, Shang Z, Luo H (2017) Ti-doped α-Fe2O3 nanorods with controllable morphology by carbon layer coating for enhanced photoelectrochemical water oxidation. Dalton Trans 46:10558–10563
10.
Zurück zum Zitat Han J, Liu Z, Guo K, Wang B, Zhang X, Hong T (2015) High-efficiency photoelectrochemical electrodes based on ZnIn2S4 sensitized ZnO nanotube arrays. Appl Catal B Environ 163:179–188 Han J, Liu Z, Guo K, Wang B, Zhang X, Hong T (2015) High-efficiency photoelectrochemical electrodes based on ZnIn2S4 sensitized ZnO nanotube arrays. Appl Catal B Environ 163:179–188
11.
Zurück zum Zitat Zhang B, Wang Z, Huang B et al (2017) Anisotropic photoelectrochemical (PEC) performances of ZnO single-crystalline photoanode: effect of internal electrostatic fields on the separation of photogenerated charge carriers during PEC water splitting. Chem Mater 28:6613–6620 Zhang B, Wang Z, Huang B et al (2017) Anisotropic photoelectrochemical (PEC) performances of ZnO single-crystalline photoanode: effect of internal electrostatic fields on the separation of photogenerated charge carriers during PEC water splitting. Chem Mater 28:6613–6620
12.
Zurück zum Zitat Liu G, Shi J, Zhang F et al (2014) A tantalum nitride photoanode modified with a hole-storage layer for highly stable solar water splitting. Angew Chem Int Ed 53:7295–7299 Liu G, Shi J, Zhang F et al (2014) A tantalum nitride photoanode modified with a hole-storage layer for highly stable solar water splitting. Angew Chem Int Ed 53:7295–7299
13.
Zurück zum Zitat Liu G, Ye S, Yan P et al (2016) Enabling an integrated tantalum nitride photoanode to approach the theoretical photocurrent limit for solar water splitting. Energy Environ Sci 9:1327–1334 Liu G, Ye S, Yan P et al (2016) Enabling an integrated tantalum nitride photoanode to approach the theoretical photocurrent limit for solar water splitting. Energy Environ Sci 9:1327–1334
14.
Zurück zum Zitat Kalanur SS, Yoo IH, Eom K, Seo H (2018) Enhancement of photoelectrochemical water splitting response of WO3 by Means of Bi doping. J Catal 357:127–137 Kalanur SS, Yoo IH, Eom K, Seo H (2018) Enhancement of photoelectrochemical water splitting response of WO3 by Means of Bi doping. J Catal 357:127–137
15.
Zurück zum Zitat Zhang J, Chang X, Li C, Li A, Liu S, Wang T, Gong J (2018) WO3 photoanodes with controllable bulk and surface oxygen vacancies for photoelectrochemical water oxidation. J Mater Chem A 6:3350–3354 Zhang J, Chang X, Li C, Li A, Liu S, Wang T, Gong J (2018) WO3 photoanodes with controllable bulk and surface oxygen vacancies for photoelectrochemical water oxidation. J Mater Chem A 6:3350–3354
16.
Zurück zum Zitat Ma M, Zhang K, Li P, Jung M, Jeong M, Park J (2016) Dual oxygen and tungsten vacancies on a WO3 photoanode for enhanced water oxidation. Angew Chem Int Ed 128:11998–12002 Ma M, Zhang K, Li P, Jung M, Jeong M, Park J (2016) Dual oxygen and tungsten vacancies on a WO3 photoanode for enhanced water oxidation. Angew Chem Int Ed 128:11998–12002
17.
Zurück zum Zitat Wang Y, Tian W, Chen C, Xu W, Li L (2019) Tungsten trioxide nanostructures for photoelectrochemical water splitting: material engineering and charge carrier dynamic manipulation. Adv Funct Mater 29:1809036 Wang Y, Tian W, Chen C, Xu W, Li L (2019) Tungsten trioxide nanostructures for photoelectrochemical water splitting: material engineering and charge carrier dynamic manipulation. Adv Funct Mater 29:1809036
18.
Zurück zum Zitat Xu F, Yao Y, Bai D et al (2015) A significant cathodic shift in the onset potential and enhanced photoelectrochemical water splitting using Au nanoparticles decorated WO3 nanorod array. J Colloid Interf Sci 458:194–199 Xu F, Yao Y, Bai D et al (2015) A significant cathodic shift in the onset potential and enhanced photoelectrochemical water splitting using Au nanoparticles decorated WO3 nanorod array. J Colloid Interf Sci 458:194–199
19.
Zurück zum Zitat Zheng G, Wang J, Liu H et al (2019) Tungsten oxide nanostructures and nanocomposites for photoelectrochemical water splitting. Nanoscale 11:18968–18994 Zheng G, Wang J, Liu H et al (2019) Tungsten oxide nanostructures and nanocomposites for photoelectrochemical water splitting. Nanoscale 11:18968–18994
20.
Zurück zum Zitat Wang Y, Gao C, Ge S, Yu J, Yan M (2016) Platelike WO3 sensitized with CdS quantum dots heterostructures for photoelectrochemical dynamic sensing of H2O2 based on enzymatic etching. Biosens Bioelectron 85:205–211 Wang Y, Gao C, Ge S, Yu J, Yan M (2016) Platelike WO3 sensitized with CdS quantum dots heterostructures for photoelectrochemical dynamic sensing of H2O2 based on enzymatic etching. Biosens Bioelectron 85:205–211
21.
Zurück zum Zitat Kwong WL, Savvides N, Sorrell CC (2012) Electrodeposited nanostructured WO3 thin films for photoelectrochemical applications. Electrochim Acta 75:371–380 Kwong WL, Savvides N, Sorrell CC (2012) Electrodeposited nanostructured WO3 thin films for photoelectrochemical applications. Electrochim Acta 75:371–380
22.
Zurück zum Zitat Liu Z, Wu J, Zhang J (2016) Quantum dots and plasmonic Ag decorated WO3 nanorod photoanodes with enhanced photoelectrochemical performances. Int J Hydrog Energy 41:20529–20535 Liu Z, Wu J, Zhang J (2016) Quantum dots and plasmonic Ag decorated WO3 nanorod photoanodes with enhanced photoelectrochemical performances. Int J Hydrog Energy 41:20529–20535
23.
Zurück zum Zitat Zhang T, Zhu Z, Chen H et al (2015) Iron-doping-enhanced photoelectrochemical water splitting performance of nanostructured WO3: a combined experimental and theoretical study. Nanoscale 7:2933–2940 Zhang T, Zhu Z, Chen H et al (2015) Iron-doping-enhanced photoelectrochemical water splitting performance of nanostructured WO3: a combined experimental and theoretical study. Nanoscale 7:2933–2940
24.
Zurück zum Zitat Xiao YH, Xu CQ, Zhang WD (2017) Facile synthesis of Ni-doped WO3 nanoplate arrays for effective photoelectrochemical water splitting. J Solid State Electrochem 21:3355–3364 Xiao YH, Xu CQ, Zhang WD (2017) Facile synthesis of Ni-doped WO3 nanoplate arrays for effective photoelectrochemical water splitting. J Solid State Electrochem 21:3355–3364
25.
Zurück zum Zitat Bai S, Yang X, Liu C, Xiang X, Luo R, He J, Chen A (2018) An integrating photoanode of WO3/Fe2O3 heterojunction decorated with NiFe-LDH to improve PEC water splitting efficiency. ACS Sustain Chem Eng 6:12906–12913 Bai S, Yang X, Liu C, Xiang X, Luo R, He J, Chen A (2018) An integrating photoanode of WO3/Fe2O3 heterojunction decorated with NiFe-LDH to improve PEC water splitting efficiency. ACS Sustain Chem Eng 6:12906–12913
26.
Zurück zum Zitat Su J, Guo L, Bao N, Girmes C (2011) Nanostructured WO3/BiVO4 heterojunction films for efficient photoelectrochemical water splitting. Nano Lett 11:1928–1933 Su J, Guo L, Bao N, Girmes C (2011) Nanostructured WO3/BiVO4 heterojunction films for efficient photoelectrochemical water splitting. Nano Lett 11:1928–1933
27.
Zurück zum Zitat Hou Y, Zuo F, Dagg AP, Liu J, Feng P (2014) Branched WO3 nanosheet array with layered C3N4 heterojunctions and CoOx nanoparticles as a flexible photoanode for efficient photoelectrochemical water oxidation. Adv Mater 26:5043–5049 Hou Y, Zuo F, Dagg AP, Liu J, Feng P (2014) Branched WO3 nanosheet array with layered C3N4 heterojunctions and CoOx nanoparticles as a flexible photoanode for efficient photoelectrochemical water oxidation. Adv Mater 26:5043–5049
28.
Zurück zum Zitat Zhan F, Liu W, Li W, Liu J, Yang Y, Li Y, Chen Q (2016) Efficient solar water oxidation by WO3 plate arrays film decorated with CoOx electrocatalyst. Int J Hydrog Energy 41:11925–11932 Zhan F, Liu W, Li W, Liu J, Yang Y, Li Y, Chen Q (2016) Efficient solar water oxidation by WO3 plate arrays film decorated with CoOx electrocatalyst. Int J Hydrog Energy 41:11925–11932
29.
Zurück zum Zitat Fu J, Xu Q, Low J, Jiang C, Yu J (2019) Ultrathin 2D/2D WO3/g-C3N4 step-scheme H2-production photocatalyst. Appl Catal B Environ 243:556–565 Fu J, Xu Q, Low J, Jiang C, Yu J (2019) Ultrathin 2D/2D WO3/g-C3N4 step-scheme H2-production photocatalyst. Appl Catal B Environ 243:556–565
30.
Zurück zum Zitat Chen J, Xiao X, Wang Y, Ye Z (2019) Ag nanoparticles decorated WO3/g-C3N4 2D/2D heterostructure with enhanced photocatalytic activity for organic pollutants degradation. Appl Surf Sci 467:1000–1010 Chen J, Xiao X, Wang Y, Ye Z (2019) Ag nanoparticles decorated WO3/g-C3N4 2D/2D heterostructure with enhanced photocatalytic activity for organic pollutants degradation. Appl Surf Sci 467:1000–1010
31.
Zurück zum Zitat Rao PM, Cai L, Liu C et al (2014) Simultaneously efficient light absorption and charge separation in WO3/BiVO4 core/shell nanowire photoanode for photoelectrochemical water oxidation. Nano Lett 14:1099–1105 Rao PM, Cai L, Liu C et al (2014) Simultaneously efficient light absorption and charge separation in WO3/BiVO4 core/shell nanowire photoanode for photoelectrochemical water oxidation. Nano Lett 14:1099–1105
32.
Zurück zum Zitat Grigioni I, Stamplecoskie KG, Selli E, Kamat P (2015) Dynamics of photogenerated charge carriers in WO3/BiVO4 heterojunction photoanodes. J Phys Chem C 119:20792–20800 Grigioni I, Stamplecoskie KG, Selli E, Kamat P (2015) Dynamics of photogenerated charge carriers in WO3/BiVO4 heterojunction photoanodes. J Phys Chem C 119:20792–20800
33.
Zurück zum Zitat Wang Y, Tian W, Chen L, Cao F, Guo J, Li L (2017) Three-dimensional WO3 nanoplate/Bi2S3 nanorod heterojunction as a highly efficient photoanode for improved photoelectrochemical water splitting. ACS Appl Mater Interfaces 9:40235–40243 Wang Y, Tian W, Chen L, Cao F, Guo J, Li L (2017) Three-dimensional WO3 nanoplate/Bi2S3 nanorod heterojunction as a highly efficient photoanode for improved photoelectrochemical water splitting. ACS Appl Mater Interfaces 9:40235–40243
34.
Zurück zum Zitat Xu J, Li X, Ju Z et al (2019) Visible-light-driven overall water splitting boosted by tetrahedrally coordinated blende cobalt (II) oxide atomic layers. Angew Chem Int Ed 131:3064–3068 Xu J, Li X, Ju Z et al (2019) Visible-light-driven overall water splitting boosted by tetrahedrally coordinated blende cobalt (II) oxide atomic layers. Angew Chem Int Ed 131:3064–3068
36.
Zurück zum Zitat Gui Y, Blackwood DJ (2015) Honey-comb structured WO3/TiO2 thin films with improved electrochromic properties. J Electronchem Soc 162:E205–E212 Gui Y, Blackwood DJ (2015) Honey-comb structured WO3/TiO2 thin films with improved electrochromic properties. J Electronchem Soc 162:E205–E212
37.
Zurück zum Zitat Tan Z, Li L, Cui C et al (2012) Solution-processed tungsten oxide as an effective anode buffer layer for high-performance polymer solar cells. J Phys Chem C 116:18626–18632 Tan Z, Li L, Cui C et al (2012) Solution-processed tungsten oxide as an effective anode buffer layer for high-performance polymer solar cells. J Phys Chem C 116:18626–18632
38.
Zurück zum Zitat Muhmood T, Khan MA, Xia M, Lei W, Wang F (2017) Enhanced photo-electrochemical, photo-degradation and charge separation ability of graphitic carbon nitride (g-C3N4) by self-type metal free heterojunction formation for antibiotic degradation. J Photochem Photobiol A 348:118–124 Muhmood T, Khan MA, Xia M, Lei W, Wang F (2017) Enhanced photo-electrochemical, photo-degradation and charge separation ability of graphitic carbon nitride (g-C3N4) by self-type metal free heterojunction formation for antibiotic degradation. J Photochem Photobiol A 348:118–124
39.
Zurück zum Zitat Zheng J, Pawar A, Kim C, Kim Y, Kang Y (2018) Highly enhancing photoelectrochemical performance of facilely-fabricated Bi-induced (002)-oriented WO3 film with intermittent short-time negative polarization. Appl Catal B Environ 233:88–98 Zheng J, Pawar A, Kim C, Kim Y, Kang Y (2018) Highly enhancing photoelectrochemical performance of facilely-fabricated Bi-induced (002)-oriented WO3 film with intermittent short-time negative polarization. Appl Catal B Environ 233:88–98
40.
Zurück zum Zitat Zhu Z, Yan Y, Li J (2015) Preparation of flower-like BiOBr–WO3–Bi2WO6 ternary hybrid with enhanced visible-light photocatalytic activity. J Alloy Compd 651:184–192 Zhu Z, Yan Y, Li J (2015) Preparation of flower-like BiOBr–WO3–Bi2WO6 ternary hybrid with enhanced visible-light photocatalytic activity. J Alloy Compd 651:184–192
42.
Zurück zum Zitat Liu Q, Lu H, Shi Z, Wu F, Guo J, Deng K, Li L (2014) 2D ZnIn2S4 nanosheet/1D TiO2 nanorod heterostructure arrays for improved photoelectrochemical water splitting. ACS Appl Mater Interfaces 6:17200–17207 Liu Q, Lu H, Shi Z, Wu F, Guo J, Deng K, Li L (2014) 2D ZnIn2S4 nanosheet/1D TiO2 nanorod heterostructure arrays for improved photoelectrochemical water splitting. ACS Appl Mater Interfaces 6:17200–17207
43.
Zurück zum Zitat Lee BR, Lee MG, Park H et al (2019) All-solution-processed WO3/BiVO4 core-shell nanorod arrays for highly stable photoanodes. ACS Appl Mater Interfaces 11:20004–20012 Lee BR, Lee MG, Park H et al (2019) All-solution-processed WO3/BiVO4 core-shell nanorod arrays for highly stable photoanodes. ACS Appl Mater Interfaces 11:20004–20012
44.
Zurück zum Zitat Li Y, Liu Z, Ruan M, Guo Z, Li X (2019) 1D WO3 nanorods/2D WO3−x nanoflakes homojunction structure for enhanced charge separation and transfer towards efficient photoelectrochemical performance. Chemsuschem 12:5282–5290 Li Y, Liu Z, Ruan M, Guo Z, Li X (2019) 1D WO3 nanorods/2D WO3−x nanoflakes homojunction structure for enhanced charge separation and transfer towards efficient photoelectrochemical performance. Chemsuschem 12:5282–5290
45.
Zurück zum Zitat Wu Q, Bu Q, Li S, Lin Y, Zou X, Wang D, Xie T (2019) Enhanced interface charge transfer via nn WO3/Ti–Fe2O3 heterojunction formation for water splitting. J Alloy Compd 803:1105–1111 Wu Q, Bu Q, Li S, Lin Y, Zou X, Wang D, Xie T (2019) Enhanced interface charge transfer via nn WO3/Ti–Fe2O3 heterojunction formation for water splitting. J Alloy Compd 803:1105–1111
46.
Zurück zum Zitat Corby S, Francàs L, Selim S et al (2018) Water oxidation and electron extraction kinetics in nanostructured tungsten trioxide photoanodes. J Am Chem Soc 140:16168–16177 Corby S, Francàs L, Selim S et al (2018) Water oxidation and electron extraction kinetics in nanostructured tungsten trioxide photoanodes. J Am Chem Soc 140:16168–16177
48.
Zurück zum Zitat Sharma MD, Mahala C, Basu M (2019) Band gap tuning to improve the photoanodic activity of ZnInxSy for photoelectrochemical water oxidation. Catal Sci Technol 9:6769–6781 Sharma MD, Mahala C, Basu M (2019) Band gap tuning to improve the photoanodic activity of ZnInxSy for photoelectrochemical water oxidation. Catal Sci Technol 9:6769–6781
Metadaten
Titel
Enhanced photoelectrochemical water oxidation of WO3/R-CoO and WO3/B-CoO photoanodes with a type II heterojunction
verfasst von
Jiali Liu
Qiang Yang
Jikai Liu
He’an Luo
Publikationsdatum
08.01.2021
Verlag
Springer US
Erschienen in
Journal of Materials Science / Ausgabe 13/2021
Print ISSN: 0022-2461
Elektronische ISSN: 1573-4803
DOI
https://doi.org/10.1007/s10853-020-05754-5

Weitere Artikel der Ausgabe 13/2021

Journal of Materials Science 13/2021 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.