Skip to main content
Log in

Fe,N-doped carbon as peroxidase mimics for single-use colorimetric bioassays

  • Chemical routes to materials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Nanozymes as promising alternatives to natural enzymes have attracted enormous attentions for their high robustness, low cost, and tunable activity. Among various candidates, carbonaceous nanomaterials possess extra advantage features of designable surface properties and good biocompatibility. However, their peroxidase-like activity is typically moderate owing to the short half-life of radical hydroxyl (·OH), the poor catalytic activity and substrate affinity. Herein, we synthesize Fe,N-doped carbon (Fe,N-C-800) via pyrolyzing Fe-doped ZIF-8 (ZnFe-ZIF) in NH3 at 800 °C. Fe,N-C-800 shows excellent peroxidase mimic with outstanding substrate affinity and catalytic velocity superior to the advanced Fe single-atom catalyst. The excellent enzyme-like performance is ascribed to the synergistic contributions of Fe- and N-doping. Fe functions as catalytic center while pyrrolic N absorbs TMB (3,3’,5,5’-Tetramethylbenzidine) substrate and enhances the electron density of Fe sites, thereby shortening the migration distance of ·OH and further improving the catalytic activity. Based on Fe,N-C-800, disposable paper bioassays are fabricated and exhibit ultrasensitive detection of H2O2.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  1. Sun Y, Xu H, Zhao X, Hui ZY, Yu CY, Wang LM, Xue JL, Zhao Y, Zhou RC, Dai HH, Miao C, Chen Q, Zhou JY, Sun GZ, Huang W (2019) Identifying the active site of ultrathin NiCo LDH as an efficient peroxidase mimic with superior substrate affinity for sensitive detection of hydrogen peroxide. J Mater Chem B 7:6232–6237

    Article  CAS  Google Scholar 

  2. Sun Y, Xu H, Wang LM, Yu CY, Zhou JY, Chen Q, Sun GZ, Huang W (2021) Ultrathin NiMn layered double hydroxide nanosheets with a superior peroxidase mimicking performance to natural HRP for disposable paper-based bioassays. J Mater Chem B 9:983–991

    Article  CAS  Google Scholar 

  3. Wu Y, Jiao L, Luo X (2019) Oxidase-like Fe–N–C single-atom nanozymes for the detection of acetylcholinesterase activity. Small 15:1903108

    Article  CAS  Google Scholar 

  4. Huang L, Chen J, Gan L, Wang J, Dong S (2019) Single-atom nanozymes. Sci Adv 5:eaav5490

    Article  CAS  Google Scholar 

  5. Hafez ME, Ma H, Ma W, Long YT (2019) Unveiling the intrinsic catalytic activities of single-gold-nanoparticle-based enzyme mimetics. Angew Chem Int Ed 58:6327–6332

    Article  CAS  Google Scholar 

  6. Han L, Zhang H, Chen D, Li F (2018) Protein-directed metal oxide nanoflakes with tandem enzyme-like characteristics: colorimetric glucose sensing based on one-pot enzyme-free cascade catalysis. Adv Funct Mater 28:1800018

    Article  Google Scholar 

  7. Ma W, Mao J, Yang X (2018) A single-atom Fe–N4 catalytic site mimicking bifunctional antioxidative enzymes for oxidative stress cytoprotection. Chem Commun 55:159–162

    Article  Google Scholar 

  8. Cheng N, Li JC, Liu D, Lin Y, Du D (2019) Single-atom nanozyme based on nanoengineered Fe–N–C catalyst with superior peroxidase-like activity for ultrasensitive bioassays. Small 15:1901485

    Article  CAS  Google Scholar 

  9. Wang Y, Qi K, Yu S (2019) Revealing the intrinsic peroxidase-like catalytic mechanism of heterogeneous single-atom Co-MoS2. Nano-Micro Lett 11:102–115

    Article  Google Scholar 

  10. Yang X, Yang Y, Gao F, Wei JJ, Qian CG, Sun MJ (2019) Biomimetic hybrid nanozymes with self-supplied H+ and accelerated O2 generation for enhanced starvation and photodynamic therapy against hypoxic tumors. Nano Lett 19:4334–4342

    Article  CAS  Google Scholar 

  11. Huo M, Wang L, Wang Y, Chen Y, Shi J (2019) Nanocatalytic tumor therapy by single-atom catalysts. ACS Nano 13:2643–2653

    CAS  Google Scholar 

  12. Yao S, Xu J, Wang Y, Chen X, Xu Y, Hu S (2006) A highly sensitive hydrogen peroxide amperometric sensor based on MnO2 nanoparticles and dihexadecyl hydrogen phosphate composite film. Anal Chim Acta 557:78–84

    Article  CAS  Google Scholar 

  13. Niu X, Shi Q, Zhu W (2019) Unprecedented peroxidase-mimicking activity of single-atom nanozyme with atomically dispersed Fe–Nx moieties hosted by MOF derived porous carbon. Biosens Bioelectron 142:111495

    Article  CAS  Google Scholar 

  14. Lou Z, Zhao S, Wang Q, Wei H (2019) N-doped carbon as peroxidase-like nanozymes for total antioxidant capacity assay. Anal Chem 91:15267–15274

    Article  CAS  Google Scholar 

  15. Yu CY, Gong YJ, Chen RY, Zhang MY, Zhou JY, An JN, Lv F, Guo SJ, Sun GZ (2018) A Solid-state fibriform supercapacitor boosted by host-guest hybridization between the carbon nanotube scaffold and MXene nanosheets. Small 14:1801203

    Article  Google Scholar 

  16. Kim MS, Cho S, Joo SH (2019) N-and B-codoped graphene: a strong candidate to replace natural peroxidase in sensitive and selective bioassays. ACS Nano 13:4312–4321

    Article  CAS  Google Scholar 

  17. Wu G, Santandreu A, Kellogg W, Gupta S, Ogoke O, Zhang H (2016) Carbon nanocomposite catalysts for oxygen reduction and evolution reactions: from nitrogen doping to transition-metal addition. Nano Energy 29:83–110

    Article  CAS  Google Scholar 

  18. Wang B, Zhao J, Yue Y (2019) Carbon with surface-enriched nitrogen and sulfur supported Au catalysts for acetylene hydrochlorination. ChemCatChem 11:1002–1009

    CAS  Google Scholar 

  19. Wang T, Yang R, Shi N et al (2019) Cu, N-codoped carbon nanodisks with biomimic stomata-like interconnected hierarchical porous topology as efficient electrocatalyst for oxygen reduction reaction. Small 15:1902410

    Article  CAS  Google Scholar 

  20. Mun Y, Lee S, Kim K (2019) Versatile strategy for tuning ORR activity of a single Fe–N4 site by controlling electron-withdrawing/donating properties of a carbon plane. J Am Chem Soc 141:6254–6262

    Article  CAS  Google Scholar 

  21. Gong YJ, RYChen, H Xu, CY Yu, X Zhao, Y Sun, ZY Hui, JY Zhou, JN An, ZZ Du, GZ Sun, W Huang, (2019) Polarity-assisted formation of hollow-frame sheathed nitrogen-doped nanofibrous carbon for supercapacitors. Nanoscale 11:2492–2500

    Article  CAS  Google Scholar 

  22. Du ZZ, Ai W, Yang J, Gong YJ, Yu CY, Zhao JF, Dong XC, Sun GZ, Huang W (2018) In situ fabrication of Ni2P nanoparticles embedded in nitrogen and phosphorus codoped carbon nanofibers as a superior anode for Li-ion batteries. ACS Sustainable Chem Eng 6:14795–14801

    Article  CAS  Google Scholar 

  23. Du ZZ, Ai W, Yu CY, Gong YJ, Chen RY, Sun GZ, Huang W (2019) A facile grinding approach to embed red phosphorus in N, P-codoped hierarchical porous carbon for superior lithium storage. Sci China Mater 63:55–61

    Article  Google Scholar 

  24. Fan K, Xi J, Fan L (2018) In vivo guiding nitrogen-doped carbon nanozyme for tumor catalytic therapy. Nat Commun 9:1440–1451

    Article  Google Scholar 

  25. Zhang C, Fu L, Liu N, Liu M, Wang Y, Liu Z (2011) Synthesis of nitrogen-doped graphene using embedded carbon and nitrogen sources. Adv Mater 23:1020–1024

    Article  CAS  Google Scholar 

  26. Hu Y, Gao XJ, Zhu Y (2018) Nitrogen-doped carbon nanomaterials as highly active and specific peroxidase mimics. Chem Mater 30:6431–6439

    Article  CAS  Google Scholar 

  27. Wu G, Mack NH, Gao W (2012) Nitrogen-doped graphene-rich catalysts derived from heteroatom polymers for oxygen reduction in nonaqueous lithium–O2 battery cathodes. ACS Nano 6:9764–9776

    Article  CAS  Google Scholar 

  28. Li Q, Xu P, Gao W (2014) Graphene/graphene-tube nanocomposites templated from cage-containing metal-organic frameworks for oxygen reduction in Li–O2 batteries. Adv Mater 26:1378–1386

    Article  Google Scholar 

  29. Wu G, Nelson M, Ma S, Meng H, Cui G, Shen PK (2011) Synthesis of nitrogen-doped onion-like carbon and its use in carbon-based CoFe binary non-precious-metal catalysts for oxygen-reduction. Carbon 49:3972–3982

    Article  CAS  Google Scholar 

  30. Zhao X, Xu H, Hui ZY, Sun Y, Yu CY, Xue JL, Zhou RC, Wang LM, Dai HH, Zhao Y, Yang J, Zhou JY, Chen Q, Sun GZ, Huang W (2019) Electrostatically assembling 2D nanosheets of MXene and MOF-derivatives into 3D hollow frameworks for enhanced lithium storage. Small 15:1904255

    Article  CAS  Google Scholar 

  31. Wang J, Huang Z, Liu W, Chang C, Tang H, Li Z (2017) Design of N-coordinated dual-metal sites: a stable and active Pt-free catalyst for acidic oxygen reduction reaction. J Am Chem Soc 139:17281–17284

    Article  CAS  Google Scholar 

  32. Ma L, Jiang F, Fan X, Wang L, He C, Zhou M (2020) Metal-organic-framework-engineered enzyme-mimetic catalysts. Adv Mater 32:2003065

    Article  CAS  Google Scholar 

  33. Fu S, Zhu C, Su D (2018) Porous carbon-hosted atomically dispersed iron-nitrogen moiety as enhanced electrocatalysts for oxygen reduction reaction in a wide range of pH. Small 14:1703118

    Article  Google Scholar 

  34. Zheng Y, Qiao SZ (2018) Metal-organic framework assisted synthesis of single-atom catalysts for energy applications. Nat Sci Rev 5:626–627

    Article  CAS  Google Scholar 

  35. Xu Y, Xue J, Zhou Q (2020) The Fe-N-C nanozyme with both accelerated and inhibited bio-catalytic activities capable of accessing drug–drug interactions. Angew Chem Int Ed 59:2–8

    Google Scholar 

  36. Yang L, Cheng D, Xu H (2018) Unveiling the high-activity origin of single-atom iron catalysts for oxygen reduction reaction. Proc Natl Acad Sci USA 115:6626–6631

    Article  CAS  Google Scholar 

  37. Peng Y, Lu B, Chen S (2018) Carbon-supported single atom catalysts for electrochemical energy conversion and storage. Adv Mater 30:1801995

    Article  Google Scholar 

  38. Wang H, Yin FX, Liu N (2019) Engineering Fe–Fe3C@Fe–N–C active sites and hybrid structures from dual metal-organic frameworks for oxygen reduction reaction in H2–O2 fuel cell and Li–O2 battery. Adv Funct Mater 29:1801995

    Google Scholar 

  39. Tian M, Zhu Y, Zhang D (2019) Pyrrolic-nitrogen-rich biomass-derived catalyst for sustainable degradation of organic pollutant via a self-powered electro-fenton process. Nano Energy 64:103940

    Article  CAS  Google Scholar 

  40. Cheng H, Lin S, Muhammad F, Lin YW, Wei H (2016) Rationally modulate the oxidase-like activity of nanoceria for self-regulated bioassays. ACS Sens 1:1336–1343

    Article  CAS  Google Scholar 

  41. Zhu X, Chen W, Wu K (2018) A colorimetric sensor of H2O2 based on Co3O4-montmorillonite nanocomposites with peroxidase activity. New J Chem 42:1501–1509

    Article  CAS  Google Scholar 

  42. Xi J, Wei G, Wu Q (2019) Light-enhanced sponge-like carbon nanozyme used for synergetic antibacterial therapy. Biomater Sci 7:4131–4141

    Article  CAS  Google Scholar 

  43. Kim MS, Lee J, Kim HS (2020) Heme cofactor-resembling Fe-N single site embedded graphene as nanozymes to selectively detect H2O2 with high sensitivity. Adv Funct Mater 30:1905410

    Article  CAS  Google Scholar 

  44. Jampaiah D, Srinivasa Reddy T, Kandjani AE, Selvakannan PR, Sabri YM, Coyle VE et al (2016) Fe-doped CeO2 nanorods for enhanced peroxidase-like activity and their application towards glucose detection. J Mater Chem B 4:3874–3885

    Article  CAS  Google Scholar 

  45. Zhou X, Wang M, Chen J, Xie X, Su X (2020) Peroxidase-like activity of Fe–N–C single-atom nanozyme based colorimetric detection of galactose. Anal Chim Acta 1128:72–79

    Article  CAS  Google Scholar 

  46. Ai L, Li L, Zhang C, Fu J, Jiang J (2013) MIL-53(Fe): a metal-organic framework with intrinsic peroxidase-like catalytic activity for colorimetric biosensing. Chem A Eur J 19:15105–15108

    Article  CAS  Google Scholar 

  47. Jiao L, Xu W, Yan H (2019) Fe–N–C single-atom nanozymes for the intracellular hydrogen peroxide detection. Anal Chem 91:11994–11999

    Article  CAS  Google Scholar 

  48. Chen Q, Li S, Liu Y (2020) Size-controllable Fe–N/C single-atom nanozyme with exceptional oxidase-like activity for sensitive detection of alkaline phosphatase. Sens Actuators B 305:127511

    Article  CAS  Google Scholar 

  49. Zhao C, Xiong C, Liu X (2019) Unraveling the enzyme-like activity of heterogeneous single atom catalyst. Chem Commun 55:2285–2288

    Article  CAS  Google Scholar 

  50. Li Z, Liang X, Gao Q (2019) Fe, N co-doped carbonaceous hollow spheres with self-grown carbon nanotubes as a high performance binary electrocatalyst. Carbon 154:466–477

    Article  CAS  Google Scholar 

  51. Nandan R, Gautam A, Nanda KK (2017) Maximizing the utilization of Fe–NxC/CNx centres for an air-cathode material and practical demonstration of metal–air batteries. J Mater Chem A 5:20252–20262

    Article  CAS  Google Scholar 

  52. Li X, Huang X, Xi S (2018) Single cobalt atoms anchored on porous N-doped graphene with dual reaction sites for efficient fenton-like catalysis. J Am Chem Soc 140:12469–12475

    Article  CAS  Google Scholar 

  53. Wang Q, Ina T, Chen WT, Shang L, Sun FF, Wei SH, Sun-Waterhouse DX, Telfer SG, Zhang T, Waterhouse GIN (2020) Evolution of Zn(II) single atom catalyst sites during the pyrolysis-induced transformation of ZIF-8 to N-doped carbons. Sci Bulletin 65:1743–1751

    Article  CAS  Google Scholar 

  54. Zhang W, Niu X, Li X (2018) A smartphone-integrated ready-to-use paper-based sensor with mesoporous carbon-dispersed Pd nanoparticles as a highly active peroxidase mimic for H2O2 detection. Sens Actuators B 265:412–420

    Article  CAS  Google Scholar 

  55. Lu Y, Ye W, Yang Q (2016) Three-dimensional hierarchical porous PtCu dendrites: a highly efficient peroxidase nanozyme for colorimetric detection of H2O2. Sens Actuators B 230:721–730

    Article  CAS  Google Scholar 

Download references

Funding

This study was funded by the National Natural Science Foundation of China (No. 21975123), the Natural Science Basic Research Program of Shaanxi (No. 2020JM-092), Six Talent Peaks Project in Jiangsu Province (No. XCL-024), Postgraduate Research & Practice Innovation Program of Jiangsu Province (No. KYCX20_0997, SJCX20_0401), and the Fundamental Research Funds for the Central Universities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gengzhi Sun.

Ethics declarations

Conflict of interests

The authors declare that they have no conflict of interest.

Additional information

Handling Editor: Christopher Blanford.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 2592 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, L., Xue, J., Chang, J. et al. Fe,N-doped carbon as peroxidase mimics for single-use colorimetric bioassays. J Mater Sci 56, 13579–13589 (2021). https://doi.org/10.1007/s10853-021-06190-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-021-06190-9

Navigation