Skip to main content
Log in

Nanocrystalline TiO2 thin films for NH3 monitoring: microstructural and physical characterization

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Nanocrystalline titanium oxide thin films have been deposited by spin coating technique and then have been analyzed to test their application in NH3 gas-sensing technology. In particular, spectrophotometric and conductivity measurements have been performed in order to determine the optical and electrical properties of titanium oxide thin films. The structure and the morphology of such material have been investigated by X ray diffraction, Scanning microscopy, high resolution electron microscopy and selected area electron diffraction. The X-ray diffraction measurements confirmed that the films grown by this technique have good crystalline tetragonal mixed anatase and rutile phase structure. The HRTEM image of TiO2 thin film showed grains of about 50–60 nm in size with aggregation of 10–15 nm crystallites. Selected area electron diffraction pattern shows that the TiO2 films exhibited tetragonal structure. The surface morphology (SEM) of the TiO2 film showed that the nanoparticles are fine with an average grain size of about 50–60 nm. The optical band gap of TiO2 film is 3.26 eV. Gas sensing properties showed that TiO2 films were sensitive as well as fast in responding to NH3. A high sensitivity for ammonia indicates that the TiO2 films are selective for this gas.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. H. Meixner, U. Lampe, Sens. Actuators B 33, 198 (1996)

    Article  Google Scholar 

  2. T. Oyabu, J. Appl. Phys. 53, 2785 (1982)

    Article  CAS  Google Scholar 

  3. J.F. Mc Aleer, P.T. Moseley, J.O.W. Norris, D.E. Williams, P. Taylor, B.C. Tofield, Mater. Chem. Phys. 17, 577 (1987)

    Google Scholar 

  4. M. Di Giulio, G. Micocci, A. Serra, A. Tepore, R. Rella, P. Siciliano, Sens. Actuators B. 24–25, 465 (1995)

  5. M. Di Giulio, G. Micocci, A. Serra, A. Tepore, R. Rella, P. Siciliano, J. Vac. Sci. Technol. A 14, 2215 (1996)

    Google Scholar 

  6. F. Boccuzzi, E. Guglielmetti, A. Chiorino, Sens. Actuators B 7, 645 (1992)

    Article  Google Scholar 

  7. B. Bott, T.A. Jones, B. Mann, Sens. Actuators B 5, 65 (1984)

    Article  CAS  Google Scholar 

  8. H.M. Lin, C.M. Hsu, H.Y. Yang, P.Y. Lee, C.C. Yang, Sens.Actuators B 22, 63 (1994)

    Article  Google Scholar 

  9. M. Cantalini, H.T. Sun, M. Faccio, M. Pelino, S. Santucci, L. Lozzi, M. Passacantando, Sens. Actuators B 31, 81 (1996)

    Article  Google Scholar 

  10. O. Schillin, K. Colbow, Sens. Actuators B 21, 151 (1994)

    Article  Google Scholar 

  11. K.M. Glaassford, N. Troullier, J.L. Martins, J.R. Chelikowsky, Solid State Commun. 76, 635 (1990)

    Article  Google Scholar 

  12. K.B. Sundaram, A. Khan, Thin Solid Films 295, 87 (1997)

    Article  CAS  Google Scholar 

  13. J. Aranovich, A. Ortiz, R.H. Bube, J. Vac. Sci. Technol. 16, 994 (1979)

    Article  CAS  Google Scholar 

  14. M.N. Islam, M.O. Hakim, H. Rahman, J. Mater. Sci. 22, 1379 (1987)

    Article  CAS  Google Scholar 

  15. S. Major, K.L. Chopra, Sol Energy Mater. 17, 319 (1988)

    Article  CAS  Google Scholar 

  16. M. Olvera, R. Asomoza, M. Konagai, M. Asomoza, Thin Solid Films 229, 196 (1993)

    Article  Google Scholar 

  17. K. Kamata, S. Matsumoto, J. Ceram, Soc. Jpn. 89, 337 (1981)

    CAS  Google Scholar 

  18. P. Souleite, B.W. Wessels, J. Mater. Res. 3, 740 (1988)

    Article  Google Scholar 

  19. Y. Natsume, H. Sakata, T. Hirayama, H. Yanagida, J. Appl. Phys. 72, 4203 (1992)

    Article  CAS  Google Scholar 

  20. W. Tang, D.C. Cameron, Thin Solid Films 238, 83 (1994)

    Article  CAS  Google Scholar 

  21. K.L. Narasimhan, S.P. Pai, V.R. Palkar, R. Pinto, Thin Solid Films 295, 104 (1997)

    Article  CAS  Google Scholar 

  22. A.P. Roth, D.F. Williams, J. Appl. Phys. 52, 6685 (1981)

    Article  CAS  Google Scholar 

  23. N. Yamazoe, J. Fuchigama, M. Kishikawa, T. Seiyama, Surf. Sci. 86, 335 (1979)

    Article  CAS  Google Scholar 

  24. H. Chon, J. Pajares, J. Catal. 14, 257 (1969)

    Article  CAS  Google Scholar 

  25. G. Sberveglieri, P. Benussi, G. Coccoli, S. Groppelli, P. Nelli, Thin Solid Films 186, 349 (1990)

    Google Scholar 

Download references

Acknowledgments

The author (VBP) thankful to Department of Science and Technology, Government of India, New Delhi for sanctioning Fast Track Project (SR/FTP/PS-09/2007).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. B. Patil.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pawar, S.G., Patil, S.L., Chougule, M.A. et al. Nanocrystalline TiO2 thin films for NH3 monitoring: microstructural and physical characterization. J Mater Sci: Mater Electron 23, 273–279 (2012). https://doi.org/10.1007/s10854-011-0403-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-011-0403-0

Keywords

Navigation