Skip to main content
Log in

Role of Gd content in Cu(1) and Cu(2) sites on electrical, microstructural, physical, mechanical and superconducting properties of YBa2Cu3−xGdxO7−δ ceramics

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

This study deals with the effects of partial Gd3+ substitution for the Cu sites on the electrical, microstructural, physical, mechanical and superconducting properties of YBa2Cu3−xGdxO7−δ ceramic superconductors with x = 0, 0.025, 0.050, 0.100 and 0.150 with the aid of dc resistivity, transport critical current density (J c ), X-Ray analysis (XRD), scanning electron microscopy (SEM), electron dispersive X-Ray (EDX), Vickers microhardness (H v ) and density measurements. The samples studied in this work are prepared by the standard solid-state reaction method. The resistivity (at room temperature), critical (onset and offset) temperature, variation of transition temperature, critical current density, hole-carrier concentration, grain size, phase purity, lattice parameter, texturing, surface morphology, element distribution, density, porosity, crystallinity, Vickers microhardness and elastic modulus (E) values of the samples are obtained and compared with each other. The obtained results show that the room temperature resistivity systematically increases with the increment of the Gd content as a result of the hole filling when the onset (T onsetc ) and offset (T offsetc ) critical temperatures determined from the resistivity curves are found to decrease from 95.2 to 93.6 K and 92.0 to 83.3 K, respectively, showing the presence of impurities and weak links between the superconducting grains. As for the critical current density measurements, the J c values decrease from 132 to 34 A/cm2 as the Gd doping increases. The XRD results give that although the Gd3+ ions substituted tend to occupy both the Cu(1) and Cu(2) sites, the ions are more favorable for the Cu(2) site as a consequence no change of the crystal structure. Besides, the peak intensities belonging to major phase (Y123) decrease monotonously with the increment of the Gd content in the system; however, new peaks belonging to the minor phases start to appear after the doping level of x = 0.0250 beyond which these peaks enhance monotonously, resulting in the decrement of the grain size. Further, the Lotgering indices calculated from the XRD patterns indicate that the texturing of the Y123 grains reduces systematically with the Gd content. According to the SEM investigations, the microstructures of the samples prepared degrade slightly with the content up to the doping level of x = 0.025 after which the morphology suddenly deteriorates due to the appearance of the different phases in the system. EDX measurements show that not only do the elements used for the preparation of the Y123 superconductors with and without Gd content distribute homogeneously but also the level of Cu element rapidly decreases with the increment of the Gd content compared to the other elements, illustrating that the Cu2+ ions may partly be substituted by Gd3+ ions. Moreover, the porosity analyses for the samples depict that the porosity increases with the Gd content, leading to the degradation of the grain connectivity. We also discuss on the mechanical properties of the samples to examine both the elastic modulus and the strength of connection between superconducting grains.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. J.G. Bednorz, K.A. Muller, Z Phys B 64, 189–193 (1986)

    Article  CAS  Google Scholar 

  2. K. Wu, J.R. Ashburn, C.J. Torng, P.H. Hor, R.L. Meng, L. Gao, Z.J. Huang, Y.Q. Wang, C.W. Chu, Phys. Rev. Lett. 58, 908–910 (1987)

    Article  CAS  Google Scholar 

  3. P. Bordet, C. Chaillout, J. Chenavas, J.L. Hodeau, M. Marezio, J. Karpinski, E. Kaldis, Nature 336, 596–599 (1988)

    Article  Google Scholar 

  4. P. Marsh, R.M. Fleming, M.L. Mandich, A.M. DeSantolo, J. Kwo, M. Hong, L.J. Martinez-Miranda, Nature 334, 660–662 (1988)

    Article  Google Scholar 

  5. B. Batlogg, Solid State Commun. 107, 639–647 (1998)

    Article  CAS  Google Scholar 

  6. A. Kuczkowski, B. Kusz, Synth. Met. 94, 145–148 (1998)

    Article  CAS  Google Scholar 

  7. M.E. Sagsoz, M. Ertugrul, U. Cevik, Mater. Lett. 60, 1778–1781 (2006)

    Article  CAS  Google Scholar 

  8. S. Gupta, R.S. Yadav, N.P. Lalla, G.D. Verma, B. Das, Integr. Ferroelectr. 116, 68–81 (2010)

    Article  CAS  Google Scholar 

  9. A. Koblischka-Veneva, M.R. Koblischka, K. Ogasawara, M. Murakami, Cryst. Eng. 5, 265–272 (2002)

    Article  CAS  Google Scholar 

  10. P. Diko, Supercond. Sci. Technol. 13, 1202–1213 (2000)

    Article  CAS  Google Scholar 

  11. K. Ogasawara, N. Sakai, M. Murakami, Supercond. Sci. Technol. 13, 688–692 (2000)

    Article  CAS  Google Scholar 

  12. P.M. Sarun, S. Vinu, R. Shabna, A. Biju, U. Syamaprasad, Mater. Res. Bull. 44, 1017–1021 (2009)

    Article  CAS  Google Scholar 

  13. C. Terzioglu, O. Ozturk, A. Kilic, A. Gencer, I. Belenli, Physica C 434, 153–156 (2006)

    Article  CAS  Google Scholar 

  14. G. Yildirim, M. Dogruer, O. Ozturk, A. Varilci, C. Terzioglu, Y. Zalaoglu, J. Supercond. Nov. Magn. 25, 893–903 (2012)

    Article  CAS  Google Scholar 

  15. A. Sidorenko, E.W. Scheidt, F. Haider, M. Klemm, S. Horn, L. Konopko, R. Tidecks, Phys. B 321, 298–300 (2002)

    Article  CAS  Google Scholar 

  16. I. Felner, B. Brosh, Phys. Rev. B 43, 10364 (1991)

    Article  CAS  Google Scholar 

  17. J.P. Franck, J. Jung, M.A.K. Mohamed, Phys. Rev. B 36, 2308 (1987)

    Article  CAS  Google Scholar 

  18. O. Dogan, M. Ertugrul, U. Cevik, E. Bacaksiz, E. Tirasoglu, A.I. Kobya, H. Erdogan, X-Ray Spectrom. 32, 363–366 (2003)

    Article  CAS  Google Scholar 

  19. T.D. Dzhafarov, M. Altunbas, A. Varilci, U. Cevik, A.I. Kopya, Mater. Lett. 26, 305–311 (1996)

    Article  CAS  Google Scholar 

  20. C.W. Luo, Physica C 470, S176–S177 (2010)

    Article  CAS  Google Scholar 

  21. S.K. Misra, L.E. Misiak, Solid State Commun. 72, 351–357 (1989)

    Article  CAS  Google Scholar 

  22. B. Chevalier, B. Lepine, A. Lalerzin, J. Darriet, J. Eournau, J.M. Tarascon, Mater. Sci. Eng., B 2, 277–280 (1989)

    Article  Google Scholar 

  23. B. Jayaram, P.C. Lanchester, M.T. Weller, Physica C 160, 17–24 (1989)

    Article  CAS  Google Scholar 

  24. Y. Ren, R. Weinstein, J. Liu, R.P. Sawh, C. Foster, Physica C 251, 15–26 (1995)

    Article  CAS  Google Scholar 

  25. H. Ikuta, A. Mase, Y. Yanagi, M. Yoahikawa, Y. Itoh, T. Oka, U. Mizutani, Supercond. Sci. Technol. 11, 1345–1347 (1998)

    Article  CAS  Google Scholar 

  26. X.Q. Xu, Y.Q. Cai, C.X. Yang, X. Yao, S. Xu, A. Kortyka, R. Puzniak, Supercond. Sci. Technol. 22, 015001 (2009)

    Article  Google Scholar 

  27. Y. Xu, M. Izumi, K. Tsuzuki, Y.F. Zhang, C.X. Xu, M. Murakami, N. Sakai, I. Hirabayashi, Supercond. Sci. Technol. 22, 095009 (2009)

    Article  Google Scholar 

  28. Y.C. Guo, J. Horvat, H.K. Liu, S.X. Dou, Physica C 300, 38–42 (1998)

    Article  CAS  Google Scholar 

  29. G. Yildirim, Y. Zalaoglu, M. Akdogan, S.P. Altintas, A. Varilci, C. Terzioglu, J. Supercond. Nov. Magn. 24, 2153–2159 (2011)

    Article  CAS  Google Scholar 

  30. X.S. Wu, S.S. Jiang, C.C. Lam, D.W. Wang, X.L. Huarg, Z.H. Wu, Y. Yuan, X. Jin, Phys. Status Solidi A 157, 439–447 (1996)

    Article  CAS  Google Scholar 

  31. R. Lal, S.P. Pandey, A.V. Narlikar, Phys. Rev. B 49, 6382–6393 (1994)

    Article  CAS  Google Scholar 

  32. C.Y. Yang, A.R. Moodenbaugh, Y.L. Wang, Y. Xu, S.M. Heald, D.O. Welch, M. Suenaga, Phys. Rev. B 42, 2231–2241 (1990)

    Article  CAS  Google Scholar 

  33. B.D. Cullity, Elemt of X-ray diffraction, 3rd edn. (Addition-Wesley, Reading, 2001), p. 207

    Google Scholar 

  34. M.A. Ansari, R. Nigam, V.P.S. Awana, A. Gupta, R.B. Saxena, H. Kishan, N.P. Lalla, V. Ganesan, A.V. Narlikar, C.A. Cardoso (2005) J. Appl. Phys. 97: 10B104

  35. O. Ozturk, E. Asikuzun, M. Erdem, G. Yildirim, O. Yildiz, C. Terzioglu, Mater. Sci: Mater. Electron. 23, 511–517 (2012)

    Article  CAS  Google Scholar 

  36. R. Lortz, T. Tomita, Y. Wang, A. Junod, J.S. Schilling, T. Masui, S. Tajima, Physica C 434, 194–198 (2006)

    Article  CAS  Google Scholar 

  37. O. Ozturk, T. Kucukomeroglu, C. Terzioglu, J. Phys.: Condens. Matter 19, 346205 (2007)

    Article  Google Scholar 

  38. D. Yazici, M. Erdem, B. Ozcelik, J. Supercond. Nov. Magn. (2011). doi:10.1007/s10948-011-1331-1

    Google Scholar 

  39. M. Dogruer, Y. Zalaoglu, A. Varilci, C. Terzioglu, G. Yildirim, O. Ozturk, J. Supercond. Nov. Magn. (2012). doi:10.1007/s10948-012-1403-x

    Google Scholar 

  40. A. Ianculescu, M. Gartner, B. Despax, V. Bley, Th Lebey, R. Gavrila, M. Modreanu, Appl. Surf. Sci. 253, 344–348 (2006)

    Article  CAS  Google Scholar 

  41. B.F. Azzouz, A. Mchirgui, B. Yangui, C. Boulesteix, B.M. Salem, Physica C 356, 83–96 (2001)

    Article  Google Scholar 

  42. J.L. Tallon, C. Bernhard, H. Shaked, R.L. Hitterman, J.D. Jorgensenn, Phys. Rev. B 51, 12911–12914 (1995)

    Article  CAS  Google Scholar 

  43. M.R. Presland, J.L. Tallon, R.G. Buckley, R.S. Liu, N.E. Flower, Physica C 176, 95–105 (1991)

    Article  CAS  Google Scholar 

  44. J.J. Neumeier, H.A. Zimmermann, Phys. Rev. B 47, 8385–8388 (1993)

    Article  CAS  Google Scholar 

  45. C. Meingast, T. Wolf, M. Klaser, G. Muller-Vogt, J. Low. Temp. Phys. 105, 1391–1396 (1996)

    Article  CAS  Google Scholar 

  46. C. Meingast, O. Kraut, T. Wolf, H. Wuhl, A. Erb, G. Muller-Vogt, Phys. Rev. Lett. 67, 1634–1637 (1991)

    Article  CAS  Google Scholar 

  47. S. Xu, X.S. Wu, G. Liu, J.S. Liu, J. Du, S.S. Jiang, J. Gao, Physica C 417, 63–68 (2004)

    Article  CAS  Google Scholar 

  48. M. Dogruer, O. Gorur, Y. Zalaoglu, O. Ozturk, G. Yildirim, A. Varilci, C. Terzioglu, J. Mater. Sci.: Mater. Electron. (2012). doi:10.1007/s10854-012-0755-0

    Google Scholar 

  49. S. Vinu, P.M. Sarun, A. Biju, R. Shabna, P. Guruswamy, U. Syamaprasad, Supercond. Sci. Technol. 21, 045001 (2008)

    Article  Google Scholar 

  50. H. Wang, A. Serquis, B. Maiorov, L. Civale, Q.X. Jia, P.N. Arendt, S.R. Foltyn, J.L. Macmanus-driscoll, X. Zhang, J. Appl. Phys. 100, 053904 (2006)

    Article  Google Scholar 

  51. P.M. Sarun, S. Vinu, R. Shabna, A. Biju, U. Syamaprasad, J. Alloy. Compd. 472, 13–17 (2009)

    Article  CAS  Google Scholar 

  52. R. Shabna, P.M. Sarun, S. Vinu, A. Biju, U. Syamaprasad, Supercond. Sci. Technol. 22, 045016 (2009)

    Article  Google Scholar 

  53. B. Raveau, M. Hervieu, C. Michel, D. Groult, Crystal chemistry of High-T c superconducting copper oxides (Springer, Berlin, 1991), p. 372

    Book  Google Scholar 

  54. T.J. Kistenmacher, J. Appl. Phys. 64, 5067–5070 (1988)

    Article  CAS  Google Scholar 

  55. G.B. Akyuz, K. Kocabas, A. Yıldız, L. Ozyuzer, M. Ciftcioglu, J. Supercond. Nov. Magn. 24, 2189–2201 (2011)

    Article  CAS  Google Scholar 

  56. S.B. Guner, O. Gorur, S. Celik, M. Dogruer, G. Yildirim, A. Varilci, C. Terzioglu, J. Alloy. Compd. (2012). doi:10.1016/j.jallcom.2012.06.082

    Google Scholar 

  57. A. Yildiz, K. Kocabas, G.B. Akyuz, J. Supercond. Nov. Magn. 25, 1459–1467 (2012)

    Article  CAS  Google Scholar 

  58. G. Yildirim, S. Bal, E. Yucel, M. Dogruer, M. Akdogan, A. Varilci, C. Terzioglu, J. Supercond. Nov. Magn. 25, 381–390 (2012)

    Article  CAS  Google Scholar 

  59. A. Biju, R.P. Aloysius, U. Syamaprasad, Supercond. Sci. Technol. 18, 1454–1459 (2005)

    Article  CAS  Google Scholar 

  60. P.M. Sarun, S. Vinu, R. Shabna, A. Biju, U. Syamaprasad, Mater. Lett. 62, 2725–2728 (2008)

    Article  CAS  Google Scholar 

  61. Y. Zalaoglu, G. Yildirim, C. Terzioglu, Mater. Sci: Mater. Electron. (2012). doi:10.1007/s10854-012-0723-8

    Google Scholar 

  62. A.I. Abou-Aly, S.A. Mahmoud, R. Awad, M.M.E. Barakat, J. Supercond. Nov. Magn. 23, 1575–1588 (2010)

    Article  CAS  Google Scholar 

  63. R. Shabna, P.M. Sarun, S. Vinu, A. Biju, U. Syamaprasad, J. Alloy. Compd. 493, 11–16 (2010)

    Article  CAS  Google Scholar 

  64. S. Jin, T.H. Tiefel, R.A. Fastnacht, G.W. Kammlott, Appl. Phys. Lett. 60, 3307–3309 (1992)

    Article  CAS  Google Scholar 

  65. C.J. Poole, H.A. Farach, R. Creswick, Superconductivity (Academic Press, San Diego, 1995), pp. 320–321

    Google Scholar 

  66. R.R. Reddy, M. Murakami, S. Tanaka, P.V. Reddy, Physica C 257, 137–142 (1996)

    Article  Google Scholar 

  67. R. Awad, A.I. Abou-Aly, M.M.H. Abdel Gawad, I. G-Eldeen, J. Supercond. Nov. Magn. (2012). doi:10.1007/s10948-011-1334-y

    Google Scholar 

  68. B. Ozkurt, Mater. Sci: Mater. Electron. (2012). doi:10.1007/s10854-012-0806-6

    Google Scholar 

  69. G.Y. Hermiz, B.A. Aljurani, H.A. Thabit, J. Supercond. Nov. Magn. (2012). doi:10.1007/s10948-012-1584-3

    Google Scholar 

  70. N.H. Mohammed, A.I. Abou-Aly, I.H. Ibrahim, R. Awad, M. Rekaby, J. Alloy. Compd. 486, 737–742 (2009)

    Article  Google Scholar 

  71. M. Muralidhar, K.N. Reddy, V.H. Babu, Phys. Status Solidi A 126, 115–120 (1991)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Terzioglu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gorur, O., Yildirim, G., Altintas, S.P. et al. Role of Gd content in Cu(1) and Cu(2) sites on electrical, microstructural, physical, mechanical and superconducting properties of YBa2Cu3−xGdxO7−δ ceramics. J Mater Sci: Mater Electron 24, 1842–1854 (2013). https://doi.org/10.1007/s10854-012-1022-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-012-1022-0

Keywords

Navigation