Skip to main content
Log in

Effects of sintering time on crystal structure, dielectric properties and conductivity of (Ca0.8Sr0.2)ZrO3 ceramics

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

(Ca0.8Sr0.2)ZrO3 ceramics were prepared using solid-state reaction process, which were sintered at 1,480 °C for different sintering time (2, 4, 6, 8, 10, 12 h, respectively), their structures were characterized by X-ray diffraction (XRD), scanning electron microscopy, transmission electron microscopy and Raman spectroscopy. Rietveld refinement for the (Ca0.8Sr0.2)ZrO3 sintered for 10 h was carried out by powder XRD at room temperature and it crystallizes in orthorhombic space group Pnma [a = 5.77341(4) Å, b = 8.05569(6) Å, c = 5.63318(4) Å and V = 261.9920(30) Å3, Z = 4]. The (Ca0.8Sr0.2)ZrO3 ceramics sintered at 1,480 °C for 2–12 h possessed a dielectric constant (ε r) of 23.6–27.9, a quality factor (Q × f) of 2,160–21,460 GHz and a temperature coefficient of resonant frequency (τ f ) from −14 to +13.6 ppm/°C. The Arrhenius plot of the dc electrical conductivity changed significantly with increasing sintering time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. R.J. Cava, J. Mater. Chem. 11, 54–62 (2001)

    Article  Google Scholar 

  2. C.L. Huang, J.Y. Chen, J. Alloy Compd. 499, 48–52 (2010)

    Article  Google Scholar 

  3. X.L. Chen, H.F. Zhou, L. Fang, X.B. Liu, Y.L. Wang, J. Alloys Compd. 509, 5829–5832 (2011)

    Article  Google Scholar 

  4. Y.B. Chen, J. Alloys Compd. 478, 657–660 (2009)

    Article  Google Scholar 

  5. P.L. Wise, I.M. Reaney, W.E. Lee, T.J. Price, D.M. Iddles, J. Eur. Ceram. Soc. 21, 2629–2632 (2001)

    Article  Google Scholar 

  6. J.Y. Chen, C.L. Huang, Mater. Lett. 64, 2585–2588 (2010)

    Article  Google Scholar 

  7. N. Lamrani, B. Itaalit, S. Marinel, M. Aliouat, Mater. Lett. 65, 346–369 (2011)

    Article  Google Scholar 

  8. H. Stetson, B. Schwartz, J. Am. Ceram. Soc. 44, 420–421 (1961)

    Article  Google Scholar 

  9. B.W. Hakki, P.D. Coleman, IEEE Trans. Microwave Theory Tech. 8, 402–410 (1960)

    Article  Google Scholar 

  10. W.E. Courtney, IEEE Trans. Microwave Theory Tech. 18, 476–485 (1970)

    Article  Google Scholar 

  11. V.M. Orera, C. Pecharroman, J.I. Pena, R.I. Merino, C.J. Serna, J. Phys. Condens. Matter 10, 7501–7510 (1998)

    Article  Google Scholar 

  12. C.H. Perry, D.J. McCarthy, G. Rupprecht, Phys. Rev. 138, A1537–A1538 (1965)

    Article  Google Scholar 

  13. H. Zheng, I.M. Reaney, J. Mater. Res. 19, 488–495 (2004)

    Article  Google Scholar 

  14. A.C. Larson, R.B. Von Dreele, LANL Rep. LAUR 86, 748 (1994)

    Google Scholar 

  15. B.H. Toby, J. Appl. Crystallogr. 34, 210–213 (2001)

    Article  Google Scholar 

  16. R.I. Smith, A.R. West, J. Solid State Chem. 108, 29–36 (1994)

    Article  Google Scholar 

  17. R.D. Shannon, Acta Crystallogr. A A32, 751–767 (1976)

    Article  Google Scholar 

  18. P. Stadelmann, Java Version. 3.0505W2006, 2006

  19. H. Tamura, Am. Ceram. Soc. Bull. 73, 92–95 (1994)

    Google Scholar 

  20. W. Wolfram, Curr. Opin. Solid State Mater. Sci. 1, 715–731 (1996)

    Article  Google Scholar 

  21. X.Y. Chen, S.X. Baia, M. Li, W.J. Zhang, J. Eur. Ceram. Soc. 33, 3001–3006 (2013)

    Article  Google Scholar 

  22. V. Ting, Y. Liu, L. Nore′n, R.L. Withers, D.J. Goossens, M. James, C. Ferraris, J. Solid State Chem. 177, 4428–4442 (2004)

    Article  Google Scholar 

  23. B.B. Straumal, A.A. Mazilkin, S.G. Protasova, P.B. Straumal, A.A. Myatiev, G. Schütz, E. Goering, T. Tietze, B. Baretzky, Philos. Mag. 93(10–12), 1371–1383 (2013)

    Article  Google Scholar 

  24. B.B. Straumal, S.G. Protasova, A.A. Mazilkin, G. Schütz, E. Goering, B. Baretzky, P.B. Straumal, JETP Lett. 97, 415–426 (2013)

    Article  Google Scholar 

  25. M.P. Hills, C. Schwandt, R.V. Kumar, J. Electrochem. Soc. 153, H189–H194 (2006)

    Article  Google Scholar 

  26. S.C. Hwang, G.M. Choi, J. Eur. Ceram. Soc. 25, 2609–2612 (2005)

    Article  Google Scholar 

  27. N.D. Patil, P.S. Jadhav, R.N. Jadhav, S.N. Mathad, V. Puri, Int. J. Self Propag. High Temp Synth. 22, 141–146 (2013)

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation (51172187), the SPDRF (20116102130002, 20116102120016) and 111 Program (B08040) of MOE, and Xi’an Science and Technology Foundation (XBCL-1-08, CX12174), and Shaanxi Province Science Foundation (2013KW12-02), and the NPU Fundamental Research Foundation (NPU-FRF-JC201232) of China.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Huiqing Fan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, W., Fan, H., Long, C. et al. Effects of sintering time on crystal structure, dielectric properties and conductivity of (Ca0.8Sr0.2)ZrO3 ceramics. J Mater Sci: Mater Electron 25, 1505–1511 (2014). https://doi.org/10.1007/s10854-014-1760-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-014-1760-2

Keywords

Navigation