Skip to main content
Log in

Conduction mechanism and dielectric properties of BiFeO3–BaTiO3 solid solutions

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The first measurements are reported for the frequency-dependent conductivity of (1−x)BiFeO3–xBaTiO3 (x = 0.10, 0.15 and 0.30) solid solutions in the frequency range of 100–106 Hz and in the temperature range of 50–300 °C. Powder X-ray diffraction confirms the formation of solid solutions. The dielectric properties were seen to improve with increasing BaTiO3 (BT) content. The conductivity (AC and DC) measurements reveal an inverse variation of the frequency exponent ‘s’ with temperature, high density of states and thermally activated process. The calculated density of states was found to be N(Ef) = 80.2 × 1032 eV−1 cm−1 at 1 kHz and 50 °C for BiFeO3–10 % BaTiO3 (BFO–10 % BT) solid solution. The impedance spectroscopy analysis confirms the presence of grain and grain boundary affecting the conductivity. Our results provide the first unambiguous evidence of conduction in crystallite BFO–BT solid solutions through correlated-barrier-hopping model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. A.J. Jacobson, B.E.F. Fender, J. Phys. C8, 844 (1975)

    Google Scholar 

  2. W. Kaczmarek, Z. Pajak, Solid State Commun. 17, 807 (1975)

    Article  Google Scholar 

  3. R.T. Smith, G.D. Achenbach, R. Gerson, W.J. James, J. Appl. Phys. 39, 70 (1986)

    Article  Google Scholar 

  4. M. Kumar, A. Srinivas, S.V. Suryanarayana, J. Appl. Phys. 87, 855 (2000)

    Article  Google Scholar 

  5. A.K. Jonscher, Dielectric Relaxation in Solids  (Chelsea Dielectric, London 1983)

  6. J.C. Dyre, T.B. Schroder, Mod. Phys. 72, 873 (2000)

    Article  Google Scholar 

  7. G.C. Psarras, Compos. Part A. 37, 1545 (2006)

    Article  Google Scholar 

  8. F. S. AL-Aqrabawi, A. M. Zihlif, J. Mater. Sci: Mater. Electron. 24, 1690 (2013)

  9. R. Punia, R. Kundu, J. Appl. Phys. 112, 083701 (2012)

    Article  Google Scholar 

  10. A. Ghosh, Phys. Rev. B. 72, 224203 (2005)

    Article  Google Scholar 

  11. A. Ghosh, Phys. Rev. B. 42, 1388 (1990)

    Article  Google Scholar 

  12. D.K. Modak, J. Mater. Sci. 36, 2539 (2001)

    Article  Google Scholar 

  13. R. Murugaraj, J. Mater. Sci. 37, 5101 (2002)

    Article  Google Scholar 

  14. P.C. Sati, M. Arora, S. Chauhan, M. Kumar, S. Chhoker, J. Mater. Sci.: Mater. Electron. 24, 5023 (2013)

    Google Scholar 

  15. S. Greičius, J. Banys, I.S. Wiza, Process. Appl. Ceram. 3, 85 (2009)

    Article  Google Scholar 

  16. A. Singh, R. Chatterjee, S.K. Mishra, J. Appl. Phys. 111, 014113 (2012)

    Article  Google Scholar 

  17. G. Catalan, J.F. Scott, Adv. Mater. 21, 246321 (2009)

    Article  Google Scholar 

  18. S.M. Selbach, T. Tybell, M.A. Einarsrudand, T. Grande, Chem. Mater. 19, 6478 (2007)

    Article  Google Scholar 

  19. M. Kumar, S. Shankar, R.K. Kotnala, Om Parkash, J. Alloys Compd. 577, 222 (2013)

    Article  Google Scholar 

  20. J. Kaur, V. Gupta, R.K. Kotnala, K.C. Verma, Ind. J. Pure Appl. Phys. 50, 57 (2012)

    Google Scholar 

  21. S.P. Yawale, S.V. Pakade, J. Mater. Sci. 28, 5451 (1993)

    Article  Google Scholar 

  22. R. Ondo-Ndong, Microelectron. J. 34, 1087 (2003)

    Article  Google Scholar 

  23. W. Li, R.W. Schwartz, Appl. Phys. Lett. 89, 242906 -1-2 (2006)

    Google Scholar 

  24. E. Barsoukov, J.R. Macdonald, Impedance Spectroscopy, Theory, Experiment, and Applications (Wiley, New York, 2005)

    Book  Google Scholar 

  25. A.R. Long, Adv. Phys. 31, 553 (1982)

    Article  Google Scholar 

  26. K. Funke, Solid State Chem. 22, 111 (1993)

    Article  Google Scholar 

  27. M. Nadeem, Chem. Phys. Lett. 366, 433 (2002)

    Article  Google Scholar 

  28. R. Salam, Phys. Status Solidi. 117, 535 (1990)

    Article  Google Scholar 

  29. K. Prasad, K.P. Chandra, K. Priyanka, A.R. Kulkarni, J. Mater. Sci. 46, 2077 (2011)

    Article  Google Scholar 

Download references

Acknowledgments

A.K.G. is thankful to DST and DAE-BRNS, India for financial supports (Grant No.: SR/S2/CMP-0038/2008) and (Grant No.: 2011/37P/11/BRNS/1038-1) respectively. The authors would like to thank Prof. Om Parkash, Department of Ceramic Engineering, IIT(BHU), Varanasi, India for their assistance on XRD facility.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manish Kumar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shankar, S., Kumar, M., Ghosh, A.K. et al. Conduction mechanism and dielectric properties of BiFeO3–BaTiO3 solid solutions. J Mater Sci: Mater Electron 25, 4896–4901 (2014). https://doi.org/10.1007/s10854-014-2250-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-014-2250-2

Keywords

Navigation