Skip to main content
Log in

Structural, optical and electrical properties of ion beam irradiated cadmium selenate nanowires

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Present study is related to the synthesis of cadmium selenate nanowires via template-assisted electrodeposition approach and their characterization before and after lithium (Li3+) ion beam irradiation. Energy-dispersive X-ray analysis and X-ray diffraction study confirmed the synthesis of cadmium selenate nanowires with monoclinic structure. Electrical properties were examined with current–voltage (I–V) source meter using two-probe method. The electrical conductivity augmentation was perceptible for semiconducting nanowires with the increase in the ion beam fluence. The band gap of pristine nanowires was found to be 1.96 eV, while the red shift was observed in the optical band gap of ion irradiated nanowires and it approaches to the value of 1.31 eV at last fluence. In XRD spectra, no evidence was found of phase change or shifting in ‘2θ’ position or evolution of any new peak. However, variation in the peak intensities was noticed that could be the result of movement of plane orientation. This study revealed that the defects induced by the ion irradiation and variation in potential gradient with fluence plays a major role in the alteration of the optical and electrical properties of the semiconducting nanowires.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. D.A. Wharam, T.J. Thornton, R. Newbury, M. Pepper, H. Ahmed, J.E.F. Frost, D.G. Hasko, D.C. Peacock, D.A. Ritchie, G.A.C. Jones, J. Phys. C: Solid State Phys. 21, L209 (1988)

    Article  Google Scholar 

  2. Z.M. Liao, C. Hao, L.P. Liu, D.P. Yu, Nanoscale Res. Lett. 5, 926 (2010)

    Article  Google Scholar 

  3. M. Tana, Y. Deng, Y. Wang, Nano Energy 3, 144 (2014)

    Article  Google Scholar 

  4. C. Cheng, H.J. Fan, Nano Today 7, 327 (2012)

    Article  Google Scholar 

  5. V. Kumar, S. Kumar, S.K. Chakarvarti, J. Mater. Sci. Mater. Electron. 21, 1277 (2010)

    Article  Google Scholar 

  6. S.T. Lai, D. Alexiev, B.D. Nener, J. Appl. Phys. 78, 3686 (1995)

    Article  Google Scholar 

  7. M. Toulemonde, Nucl. Instrum. Methods Phys. Res. Sect. B 156(1), 1 (1999)

    Article  Google Scholar 

  8. N.V. Doan, G. Martin, Phys. Rev. B 67, 134107 (2003)

    Article  Google Scholar 

  9. M. McPherson, J. Opt. A: Pure Appl. Opt. 7, S325 (2005)

    Article  Google Scholar 

  10. V.R. Pillai, S.K. Khamari, V.K. Dixit, T. Ganguli, S. Kher, S.M. Oak, Nuclear Nucl. Instrum. Methods A 685, 41 (2012)

    Article  Google Scholar 

  11. X. Duan, C. Niu, V.J. Chen, J.W. Parce, S. Empedocles, J.L. Goldman, Nature 425, 274 (2003)

    Article  Google Scholar 

  12. Y. Chen, L. Wei, G. Zhang, J. Jiao Nanoscale Res. Lett. 7, 516 (2012)

    Article  Google Scholar 

  13. K.M. Abhirami, P. Matheswaran, B. Gokul, R. Sathyamoorthy, K. Asokan, Appl. Phys. A 111(4), 1175 (2013)

    Article  Google Scholar 

  14. M. Seita, A.S. Sologubenko, F. Fortuna, M.J. Süess, R. Spolenak, Acta Mater. 64, 297 (2014)

    Article  Google Scholar 

  15. A.G. Bishay, S. El-Gamal, A. c. conductance of γ-irradiated discontinuous platinum films. J. Mater. Sci. Mater. Electron. 24(7), 2619 (2013)

    Article  Google Scholar 

  16. M.V. Kumar, S. Verma, V. Shobha, B. Jayashree, D. Kanjilal, R. Ramani, S. Krishnaveni, J. Mater. Sci. Res. 3(3), 24.15 (2014)

    Google Scholar 

  17. M. Kumari, P. Rana, R.P. Chauhan, Nucl. Instrum. Methods A 753, 116–120 (2014)

    Article  Google Scholar 

  18. X. Xu, X. Fang, H. Zeng, T. Zhai, Y. Bando, D. Golberg, Sci. Adv. Mater. 2, 273 (2010)

    Article  Google Scholar 

  19. R.P. Chauhan, D. Gehlawat, A. Kaur, P. Rana, Radiat. Eff. Defect Solids 168(7–8), 484 (2013)

    Article  Google Scholar 

  20. N. Kumar, R. Kumar, S. Kumar, S.K. Chakarvarti, J. Mater. Sci. Mater. Electron. 25, 3537 (2014)

    Article  Google Scholar 

  21. B.D. Cullity, Elements of X-Ray Diffraction, 2nd edn. (Addison-Wesley Publishing Company, USA, 1978)

    Google Scholar 

  22. C. Barret, T.B. Massalski, Structure of Metals: Crystallographic Methods, Principles and Data, 3rd edn. (Petgamon Press, Oxford, 1980), p. 202

    Google Scholar 

  23. G.B. Harris, Philos. Mag. 43, 133 (1952)

    Google Scholar 

  24. T.W. Cornelius, J. Brotz, N. Chtanko, D. Dobrev, G. Miehe, R. Newmann, M.E.T. Molares, Nanotechnology 16, S246 (2005)

    Article  Google Scholar 

  25. D. Gehlawat, R.P. Chauhan, Mater. Chem. Phys. 145(1), 60 (2014)

    Article  Google Scholar 

  26. B.D. Cullity, S.R. Stock, Elements of X-ray diffraction, 3rd edn. (Prentice-Hall, USA, 2001), pp. 167–171

    Google Scholar 

  27. A.R. Stokes, A.J.C. Wilson, Proc. Phys. Soc. Lond. 56, 174 (1944)

    Article  Google Scholar 

  28. G.K. Williamson, W.H. Hall, Acta Metall. 1, 22 (1953)

    Article  Google Scholar 

  29. T. Watanabe, J. Mater. Sci. 46, 4095 (2011)

    Article  Google Scholar 

  30. A.M.S. Galante, L.L. Campos, Characterization of polycarbonate dosimeter for gamma-radiation dosimetry. in Proceedings of Third European IPRA Congress, Helsinki, Finland (2010)

  31. R.P. Chauhan, D. Gehlawat, A. Kaur, J. Exp. Nanosci. 9(8), 871 (2012)

    Article  Google Scholar 

  32. J. Tauc, A. Menth, Optical processes in solids. J. Non-Cryst. Solids 8, 569 (1972)

    Article  Google Scholar 

  33. G.V. Parkash, R. Singh, A. Kumar, R.K. Mishra, Mater. Lett. 60, 1744 (2006)

    Article  Google Scholar 

  34. S.C. Singh, K.R. Swarnkar, R. Gopal, Bull. Mater. Sci. 33, 21 (2010)

    Article  Google Scholar 

  35. K.M. Abhirami, R. Sathyamoorthy, K. Asokan, Radiat. Phys. Chem. 91, 35 (2013)

    Article  Google Scholar 

  36. Z. Zhang, K. Yao, Y. Liu, C. Jin, X. Liang, Q. Chen, L.M. Peng, Adv. Funct. Mater. 17(14), 2478 (2007)

    Article  Google Scholar 

  37. A. Miotello, R. Kelly, M. Dapor, Nucl. Instrum. Methods B 141, 16 (1998)

    Article  Google Scholar 

  38. H. Ullmaier, W. Schilling, Phys. Mod. Mater. 1, 301 (1980)

    Google Scholar 

  39. R.E. Smallman, A.H.W. Ngan, Physical Metallurgy and Advanced Materials, 7th edn. (Butterworth-Heinemann, 2007)

  40. P. Kofstad, T. Norby, Defects and Transport in Crystalline Solids (University of Oslo, Oslo, 2007)

    Google Scholar 

Download references

Acknowledgments

The authors wish to thank the help provided from the Director and technical staff of pelletron group during the irradiation experiment at Inter University Accelerator Centre (IUAC), New Delhi, India. Authors also acknowledge NIT Kurukshetra, India for SEM and XRD facilities and SAI Lab, Thapar University, Patiala, India for providing EDS facility.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pallavi Rana.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rana, P., Chauhan, R.P. Structural, optical and electrical properties of ion beam irradiated cadmium selenate nanowires. J Mater Sci: Mater Electron 25, 5630–5637 (2014). https://doi.org/10.1007/s10854-014-2352-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-014-2352-x

Keywords

Navigation