Skip to main content

Advertisement

Log in

Dielectric properties of CaCu3Ti4O12–silicone rubber composites

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

CCTO–silicone rubber composites with different CCTO mass fractions have been prepared. SEM images show that CCTO particles distribute evenly in silicone rubber matrix. The experimental results reveal that the composites possess excellent mechanical and dielectric properties. The dielectric constant of the composites has been simulated in the light of two different theoretical models which can almost properly predict the experimental values for the composites except when the mass fraction of CCTO increases beyond 30 %, the experimental values begin to slightly deviate down from the predicted ones. Both the dielectric constant and loss values increase with the increase of uniaxial pressure applied on the composites. For the composite with CCTO mass fraction of 50 % under the pressure of 4 MPa, its dielectric constant value has been improved by about three times, but its loss value has been raised by less than twice that of the composites without pressure. Therefore, the dependence of dielectric constant on pressure makes it a new promising material in practical applications as capacitance sensors and other electronic devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. X. Liu, C. Xiong, H. Sun, L. Dong, R. Li, Y. Liu, Mat. Sci. Eng. B-Solid 127, 261–265 (2006)

    Article  Google Scholar 

  2. Z. Kutnjak, B. Vodopivec, D. Kuščer, M. Kosec, V. Bobnar, B. Hilczer, J. Non-Cryst. Solids 351, 1261–1265 (2005)

    Article  Google Scholar 

  3. S. Xie, B. Zhu, X. Wei, Z. Xu, Y.-Y. Xu, Compos. Part A-Appl. Sci 36, 1152–1157 (2005)

    Article  Google Scholar 

  4. K.H. Lam, H.L.W. Chan, H.S. Luo, Q.R. Yin, Z.W. Yin, C.L. Choy, Microelectro. Eng. 66, 792–797 (2003)

    Article  Google Scholar 

  5. X.X. Wang, K.H. Lam, X.G. Tang, H.L.W. Chan, Solid State Commun. 130, 695–699 (2004)

    Article  Google Scholar 

  6. Z. Dang, C. Nan, Ceram. Int. 31, 349–351 (2005)

    Article  Google Scholar 

  7. F. Chao, G. Liang, W. Kong, X. Zhang, Mater. Chem. Phys. 108, 306–311 (2008)

    Article  Google Scholar 

  8. Y. Bai, Z.Y. Cheng, V. Bharti, H.S. Xu, Q.M. Zhang, Appl. Phys. Lett. 25(76), 3804–3806 (2000)

    Article  Google Scholar 

  9. F. Chao, G. Liang, W. Kong, Z. Zhang, J. Wang, Polym. Bull. 60, 129–136 (2008)

    Article  Google Scholar 

  10. W. Li, X. Zhijun, R. Chu, F. Peng, J. Hao, J. Alloys Compd. 482, 137–140 (1999)

    Article  Google Scholar 

  11. W. Luan, L. Gao, J. Guo, Ceram. Int. 25, 727–729 (1999)

    Article  Google Scholar 

  12. A.P. Ramirez, M.A. Subramanian, M. Gardel, G. Blumberg, D. Li, T. Vogt, S.M. Shapiro, Solid State Commun. 115, 217–220 (2000)

    Article  Google Scholar 

  13. S.-D. Cho, S.-Y. Lee, J.-G. Hyun, K.-W. Paik, J. Mater. Sci.- Mater. Electron. 16, 77–84 (2005)

    Article  Google Scholar 

  14. S. Babu, K. Singh, A. Govindan, Appl. Phys. A 107, 697–700 (2012)

    Article  Google Scholar 

  15. C.Y. Zhi, Y. Bando, T. Terao, C. Tang, D. Golberg, Pure Appl. Chem. 82(11), 2175–2183 (2010)

    Article  Google Scholar 

  16. R.K. Grubbs, E.L. Venturini, P.G. Clem, J.J. Richardson, B.A. Tuttle, G.A. Samara, Phys. Rev. 72, 104111 (2005)

    Article  Google Scholar 

Download references

Acknowledgments

This study is supported by National Natural Science Foundation China (Project No. 11175159) and The Basic Research of Plan on Natural Science of the Education Department of Henan Province (Grant No. 12A140016).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhenping Chen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, T., Chen, J., Dai, H. et al. Dielectric properties of CaCu3Ti4O12–silicone rubber composites. J Mater Sci: Mater Electron 26, 312–316 (2015). https://doi.org/10.1007/s10854-014-2401-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-014-2401-5

Keywords

Navigation