Skip to main content
Log in

Facile synthesis of electromagnetic Ni@glass fiber composites via electroless deposition method

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Electromagnetic Ni@glass fiber composite with perfect Ni layers were successfully obtained by a versatile electroless deposition method. Glass fibers were firstly pretreated by roughing, sensitization, and activation. Then the glass fibers after pretreatment were conducted the electroless nickel process. We have investigated the influence of bath solution parameters on the morphology, chemical composition, magnetic property, and conductivity of the Ni@glass fiber composites using scanning electron microscopy, X-ray diffraction, vibrating sample magnetometry, transmission electron microscope, and four-probe meter techniques, respectively. The deposited nickel coatings and volume resistivity of the obtained samples were dependent on the bath temperature, pH value, dosage of complexing agent and reductant. Uniform and compact Ni film could be deposited on the surface of glass fibers, with which the optimal volume resistivity could reach (7.36 ± 0.37) × 10−3 Ω cm, and the saturation magnetization (M s ) and coercivity (H c ) were confirmed to be 3.0 emu/g and 164.5 Oe, respectively. The current synthetic process may prompt the applicability in electromagnetic shielding field with industrial scale production.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. W.L. Song, M.S. Cao, M.M. Lu, S. Bi, C.Y. Wang, J. Liu, J. Yuan, L.Z. Fan, Flexible graphene/polymer composite films in sandwich structures for effective electromagnetic interference shielding. Carbon 66, 67–76 (2014)

    Article  Google Scholar 

  2. S. Kwon, R.J. Ma, U. Kim, H.R. Choi, S. Baik, Flexible electromagnetic interference shields made of silver flakes, carbon nanotubes and nitrile butadiene rubber. Carbon 68, 118–124 (2014)

    Article  Google Scholar 

  3. X.M. Liu, X.W. Yin, L. Kong, Q. Li, Y. Liu, W.Y. Duan, L.T. Zhang, L.F. Cheng, Fabrication and electromagnetic interference shielding effectiveness of carbon nanotube reinforced carbon fiber/pyrolytic carbon composites. Carbon 68, 501–510 (2014)

    Article  Google Scholar 

  4. G. Sreenivasulu, M. Popov, R. Zhang, K. Sharma, C. Janes, A. Mukundan, G. Srinivasan, Magnetic field assisted self-assembly of ferrite–ferroelectric core–shell nanofibers and studies on magneto–electric interactions. Appl. Phys. Lett. 104, 052910 (2014)

    Article  Google Scholar 

  5. M. Salavati-Niasari, J. Javidi, Synthesis of hollow SiO2 nanoparticles from Dy2O3@SiO2 core–shell nanocomposites via a recyclable sonochemical method. J. Clust. Sci. 23, 1019–1028 (2012)

    Article  Google Scholar 

  6. V. Mancier, C.R. Bertrand, J. Dille, J. Michel, P. Fricoteaux, Sono and electrochemical synthesis and characterization of copper core–silver shell nanoparticles. Ultrason. Sonochem. 17, 690–696 (2010)

    Article  Google Scholar 

  7. K.L. Mcgilveray, C. Fasciani, C.J.B. Alejo, R.S. Narbonne, J.C. Scaiano, Photochemical strategies for the seed-mediated growth of gold and gold–silver nanoparticles. Langmuir 28, 16148–16155 (2012)

    Article  Google Scholar 

  8. K.J. Lin, H.M. Wu, Y.H. Yu, C.Y. Ho, M.H. Wei, F.H. Lu, W.J. Tseng, Preparation of PMMA-Ni core–shell composite particles by electroless plating on polyelectrolyte-modified PMMA beads. Appl. Surf. Sci. 282, 741–745 (2013)

    Article  Google Scholar 

  9. M. Uysal, R. Karslioğlu, A. Alp, H. Akbulut, The preparation of core–shell Al2O3/Ni composite powders by electroless plating. Ceram. Int. 39, 5485–5493 (2013)

    Article  Google Scholar 

  10. W.Z. Li, T. Qiu, L.L. Wang, S.S. Ren, J.R. Zhang, L.F. He, X.Y. Li, Preparation and electromagnetic properties of core/shell polystyrene polypyrrole Nickel composite microspheres. ACS Appl. Mater. Interfaces 5, 883–891 (2013)

    Article  Google Scholar 

  11. X.J. Tang, C.L. Bi, C.X. Han, B.G. Zhang, A new palladium-free surface activation process for Ni electroless plating on ABS plastic. Mater. Lett. 63, 840–842 (2009)

    Article  Google Scholar 

  12. Y.X. Lu, L.L. Xue, F. Li, Silver nanoparticle catalyst for electroless Ni deposition and the promotion of its adsorption onto PET substrate. Surf. Coat. Tech. 205, 519–524 (2010)

    Article  Google Scholar 

  13. J.L. Jiang, H.Q. Lu, L.X. Zhang, N.P. Xu, Preparation of monodisperse Ni/PS spheres and hollow nickel spheres by ultrasonic electroless plating. Surf. Coat. Tech. 201, 7174–7179 (2007)

    Article  Google Scholar 

  14. D. Dong, X.H. Chen, W.T. Xiao, G.B. Yang, P.Y. Zhang, Preparation and properties of electroless Ni–P–SiO2 composite coatings. Appl. Surf. Sci. 255, 7051–7055 (2009)

    Article  Google Scholar 

  15. L.M. Luo, Z.L. Lu, X.Y. Tan, X.Y. Ding, L.M. Huang, J.G. Cheng, L. Zhu, Y.C. Wu, A specific chemical activation pretreatment for electroless nickel plating on SiC ceramic powders. Powder Technol. 249, 431–435 (2013)

    Article  Google Scholar 

  16. M. Uysal, R. Karslioğlu, A. Alp, H. Akbulut, Nanostructured core–shell Ni deposition on SiC particles by alkaline electroless coating. Appl. Surf. Sci. 257, 10601–10606 (2011)

    Article  Google Scholar 

  17. S.C. Tjong, S.A. Xu, Y.W. Mai, Impact fracture toughness of short glass fiber-reinforced polyamide 6, 6 hybrid composites containing elastomer particles using essential work of fracture concept. Mater. Sci. Eng. A 347, 338–345 (2003)

    Article  Google Scholar 

  18. K. Wang, J.S. Wu, H.M. Zeng, Microstructures and fracture behavior of glass-fiber reinforced PBT/PC/E-GMA elastomer blends-1: microstructures. Compos. Sci. Technol. 61, 1529–1538 (2001)

    Article  Google Scholar 

  19. C. Kaynak, A. Arikan, T. Tincer, Flexibility improvement of short glass fiber reinforced epoxy by using a liquid elastomer. Polymer 44, 2433–2439 (2003)

    Article  Google Scholar 

  20. H.B. Zhang, W.L.X.J. Yang, L.D. Lu, X. Wang, X.D. Sun, Y.C. Zhang, Development of polyurethane elastomer composite materials by addition of milled fiberglass with coupling agent. Mater. Lett. 61, 1358–1362 (2007)

    Article  Google Scholar 

  21. Y. Huang, K. Shi, Z.J. Liao, Y.L. Wang, L. Wang, F. Zhu, Studies of electroless Ni–Co–P ternary alloy on glass fibers. Mater. Lett. 61, 1742–1746 (2007)

    Article  Google Scholar 

  22. W.F. Lien, P.C. Huang, S.C. Tseng, C.H. Cheng, S.M. Lai, W.C. Liaw, Electroless silver plating on teraaethoxy silane-bridged fiber glass. Appl. Surf. Sci. 258, 2246–2254 (2012)

    Article  Google Scholar 

  23. C.J. Xu, G.L. Liu, H.Y. Chen, R.H. Zhou, Y.Q. Liu, Fabrication of conductive copper-coated glass fibers throughelectroless plating process. J. Mater. Sci.: Mater. Electron. 25, 2611–2617 (2014)

    Google Scholar 

  24. A. Bouremana, A. Guittoum, M. Hemmous, B. Rahal, J.J. Sunol, D. Martínez-Blanco, J.A. Blanco, P. Gorria, N. Benrekaa, Crystal structure, microstructure and magnetic properties of Ni nanoparticles elaborated by hydrothermal route. J. Magn. Magn. Mater. 358–359, 11–15 (2014)

    Article  Google Scholar 

  25. H.Y. Chen, C.J. Xu, C. Chen, G.Z. Zhao, Y.Q. Liu, Flower-like hieraichical nickel microstructures: Facile synthesis, growth mechanism, and their magnetic properties. Mater. Res. Bull. 47, 1839–1844 (2012)

    Article  Google Scholar 

Download references

Acknowledgments

The work was supported by High-level Scientific Research Foundation for the Introduction of Talent through North University of China.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chunju Xu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, R., Chen, H., Xu, C. et al. Facile synthesis of electromagnetic Ni@glass fiber composites via electroless deposition method. J Mater Sci: Mater Electron 26, 3530–3537 (2015). https://doi.org/10.1007/s10854-015-2865-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-015-2865-y

Keywords

Navigation