Skip to main content
Log in

Investigation of relaxation process in poly(vinylidene fluoride–hexafluoropropylene) using dielectric relaxation spectroscopy

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Dielectric relaxation behavior of poly(vinylidene fluoride–hexafluoropropylene) [P(VDF–HFP)] is investigated on the basis of dielectric relaxation spectroscopy at 20–200 °C and 20–5 MHz after conversion to complex electric modulus formalism. It is found that imaginary modulus spectra exhibit asymmetry peak with peak-width much broader than that of the Debye peak. The peaks are skewed toward the high frequency sides due to the effect of the conductivity. The complex electric modulus data have been fitted using non-exponent Kohlrausch–Williams–Watts and Cole–Cole functions. The results show that the non-exponent parameter (β) and the shape parameter (α) are all lower than idealized Debye-type, indicating a wide relaxation distribution of P(VDF–HFP). Both the activation energies Ea from \({\text{M}}^{\prime \prime }\) spectra and conductivity are all due to the contribution of dc and ac conductive relaxation process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. N. Murayama, K. Nakamura, H. Obara, M. Segawa, The strong piezoelectricity in polyvinylidenefluroide (PVDF). Ultrasonics 14, 15–23 (1976)

    Article  Google Scholar 

  2. J.Y. Song, C.L. Cheng, Y.Y. Wang, C.C. Wan, Microstructure of poly(vinylidene fluoride)-based polymer electrolyte and its effect on transport properties. J. Electrochem. Soc. 149, A1230–A1236 (2002)

    Article  Google Scholar 

  3. M.D. Micahed, N.A. Bakr, M.I. Abdel-Hamid, O. El-Hanafy, M. El-Nimr, Dielectric relaxation and electric modulus behavior in poly(viny1 alcohol)-based composite systems. J. Appl. Polym. Sci. 59, 655–662 (1996)

    Article  Google Scholar 

  4. W. Howard, J.R. Starkweather, P. Avakian, Conductivity and the electric modulus in polymers. J. Polym. Sci. Polym. Phys. 30, 637–641 (1992)

    Article  Google Scholar 

  5. N.G. McCrum, B.E. Read, G. Williams, Anelastic and Dielectric Effects in Polymeric Solids (Wiley, NewYork, 1967), pp. 108–111

    Google Scholar 

  6. P.B. Macedo, C.T. Moynihan, R. Bose, The role of ionic diffusion in polarization in vitreous ionic conductors. Phys. Chem. Glasses 13, 171–179 (1972)

    Google Scholar 

  7. F.Q. Tian, Y. Ohki, Electric modulus powerful tool for analyzing dielectric behavior. IEEE Trans. Dielectr. Electr. Insul. 21, 929–931 (2014)

    Article  Google Scholar 

  8. A.C. Lopes, C.M. Costa, R.S. i Serra, I.C. Neves, J.G. Ribelles, S. Lanceros-Méndez, Dielectric relaxation, ac conductivity and electric modulus in poly(vinylidenefluoride)/NaY zeolite composites. Solid State Ion. 235, 42–50 (2013)

    Article  Google Scholar 

  9. A. Karmakar, A. Ghosh, Dielectric permittivity and electric modulus of poly-ethylene oxide (PEO)–LiClO4 composite electrolytes. Curr. Appl. Phys. 12, 539–543 (2012)

    Article  Google Scholar 

  10. S.A. Chen, C.S. Liao, Conductivity relaxation and chain motions in conjugated conducting polymers: neutral poly(3-alkylthiophene)s. Macromolecules 26, 2810–2816 (1993)

    Article  Google Scholar 

  11. A.K. Jonscher, Dielectric relaxation in solids (Chelsea Dielectric press, London, 1983)

    Google Scholar 

  12. G.M. Tsangaris, G.C. Psarras, N. Kouloumbi, Electric modulus and interfacial polarization in composite polymeric systems. J. Mater. Sci. 33, 2027–2037 (1998)

    Article  Google Scholar 

  13. S.R. Eliotta, Ac conduction in amorphous chalcogenide and pnictide semiconductors. Adv. Phys. 36, 135–218 (1987)

    Article  Google Scholar 

  14. I.M. Hodge, M.D. Ingram, A.R. West, Impedance and modulus spectroscopy of polycrystalline solid electrolytes. J. Electroanal. Chem. 74, 125–143 (1976)

    Article  Google Scholar 

  15. A.A. Saif, P. Poopalan, AC conductivity and dielectric relaxation behavior of sol–gel BaxSr1−xTiO3thin films. J. Mater. Sci. Technol. 27, 802–808 (2011)

    Article  Google Scholar 

  16. K.L. Ngai, S.W. Martin, Correlation between the activation enthalpy and Kohlrausch exponent for ionic conductivity in oxide glasses. Phys. Rev. B 40, 10550–10556 (1989)

    Article  Google Scholar 

  17. P.K. Dixon, Specific-heat spectroscopy and dielectric susceptibility measurements of salol at the glass transition. Phys. Rev. B 42, 8179–8186 (1990)

    Article  Google Scholar 

  18. R.M. Neagu, E. Neagu, N. Bonanos, P. Pissis, Electrical conductivity studies in nylon 11. J. Appl. Phys. 88, 6669–6677 (2000)

    Article  Google Scholar 

  19. M. Mudarra, J. Belana, J.C. Canadas, J.A. Diego, J. Sellares, Space charge relaxation in polyetherimides by the electric modulus formalism. J. Appl. Phys. 88, 4807–4812 (2000)

    Article  Google Scholar 

  20. D.R. Day, T.J. Lewis, H.L. Lee, S.D. Senturia, The role of boundary layer capacitance at blocking electrodes in the interpretation of dielectric cure data in adhesives. J. Adhes. 18, 73–90 (1985)

    Article  Google Scholar 

  21. J.R. Macdonald, Impedance Spectroscopy (Wiley, New York, 1987)

    Google Scholar 

  22. G. Perrier, A. Bergeret, Maxwell–Wagner–Sillars relaxations in polystyrene–glass-bead composites. J. Appl. Phys. 77, 2651–2658 (1995)

    Article  Google Scholar 

  23. V. Baziard, S. Breton, S. Toutain, A. Gourdenne, Dielectric properties of aluminium powder-epoxy resin composites. Eur. Polym. J. 24, 521–526 (1988)

    Article  Google Scholar 

  24. V. Baziard, S. Breton, S. Toutain, A. Gourdenne, Dielectric properties of copper powder-epoxy resin composites. Eur. Polym. J. 24, 633–638 (1988)

    Article  Google Scholar 

  25. V.V. Kochervinskii, I.A. Malyshkina, G.V. Markin, N.D. Gavrilova, N.P. Bessonova, Dielectric relaxation in vinylidene fluoride–hexafluoropropylene co-polymers. J. Appl. Polym. Sci. 105, 1101–1117 (2007)

    Article  Google Scholar 

  26. M.D. Migahed, F. Fahmy, Structural relaxation around the glass transition temperature in amorphous polymer blends: temperature and composition dependence. Polymer 35, 1688–1693 (1994)

    Article  Google Scholar 

  27. A.S. Nowich, B.S. Lim, A.V. Vaysleyb, Nature of the ac conductivity of ionically conducting crystals and glasses. J. Non-Cryst. Solids 172–174, 1243–1251 (1994)

    Article  Google Scholar 

Download references

Acknowledgments

This work was funded by National Basic Research Program of China (“973” Program No. 2010CB71600) and Natural Science Foundations of Hebei province of China (E2012203153).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Guirong Peng or Zaiji Zhan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, X., Peng, G., Jiang, X. et al. Investigation of relaxation process in poly(vinylidene fluoride–hexafluoropropylene) using dielectric relaxation spectroscopy. J Mater Sci: Mater Electron 27, 718–723 (2016). https://doi.org/10.1007/s10854-015-3808-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-015-3808-3

Keywords

Navigation