Skip to main content

Advertisement

Log in

Thermally oxidation synthesis of CuO nanoneedles on Cu foam and its enhanced lithium storage performance

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In this work, CuO nanoneedles have been in situ grown on Cu foam through simple thermal oxidation in the air. The morphologies and microstructures of as-prepared sample were characterized by using X-ray diffraction, Raman spectrum, scanning electron microscopy, transmission electron microscopes. It was found that the one-dimensional CuO nanoneedles with single crystalline were uniform distributed upon the layer of Cu foam’s skeleton. Directly using the as-prepared sample as the anode material for lithium-ion battery, the electrochemical performances of CuO nanoneedles on Cu foam were investigated by galvanostatic discharge–charge tests, cyclic voltammetry, as well as impedance spectroscopy measurement. The in situ growth electrode without binder realized an initial capacity as high as 940 and 446 mAh g−1 still retained even after 100 cycles of charging and discharging. The superior lithium storage performance may be attributed to the unique hierarchical architectured of nanoneedles on skeleton of porous foam, which offers excellent electro-conductivity for the intimate contact between CuO active material and Cu foam current collector, and provides a large surface to volume ratio that favors lithium-storage. The results propose that the as-prepared CuO nanoneedles on Cu foam would be a potential anode material for lithium-ion battery applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. L. Ji, Z. Lin, M. Alcoutlabi, X. Zhang, Energy Environ. Sci. 4, 2682 (2011)

    Article  Google Scholar 

  2. L. Ren, Y. Liu, X. Qi et al., J. Mater. Chem. 22, 21513 (2012)

    Article  Google Scholar 

  3. X. Xu, W. Liu, Y. Kim, J. Cho, Nano Today 9, 604 (2014). doi:10.1016/j.nantod.2014.09.005

    Article  Google Scholar 

  4. P. Poizot, S. Laruelle, S. Grugeon, L. Dupont, J. Tarascon, Nature 407, 496 (2000)

    Article  Google Scholar 

  5. A.S. Arico, P. Bruce, B. Scrosati, J.-M. Tarascon, W. Van Schalkwijk, Nat. Mater. 4, 366 (2005)

    Article  Google Scholar 

  6. M. Reddy, G. Subba Rao, B. Chowdari, Chem. Rev. 113, 5364 (2013)

    Article  Google Scholar 

  7. H. Li, Z. Wang, L. Chen, X. Huang, Adv. Mater. 21, 4593 (2009)

    Article  Google Scholar 

  8. S.-F. Zheng, J.-S. Hu, L.-S. Zhong, W.-G. Song, L.-J. Wan, Y.-G. Guo, Chem. Mater. 20, 3617 (2008)

    Article  Google Scholar 

  9. X. Chen, N. Zhang, K. Sun, J. Mater. Chem. 22, 13637 (2012)

    Article  Google Scholar 

  10. S. Gao, S. Yang, J. Shu, S. Zhang, Z. Li, K. Jiang, J. Phys. Chem. C 112, 19324 (2008)

    Article  Google Scholar 

  11. X. Gao, J. Bao, G. Pan et al., J. Phys. Chem. B 108, 5547 (2004)

    Article  Google Scholar 

  12. R. Sahay, P. Suresh Kumar, V. Aravindan et al., J. Phys. Chem. C 116, 18087 (2012)

    Article  Google Scholar 

  13. C. Wang, Q. Li, F. Wang et al., ACS Appl. Mater. Interfaces 6, 1243 (2014)

    Article  Google Scholar 

  14. Y. Zhu, N. Sun, W. Lin, Y. Ma, C. Lai, Q. Wang, RSC Adv. 5, 68061 (2015)

    Article  Google Scholar 

  15. L. Shi, C. Fan, C. Sun et al., RSC Adv. 5, 28611 (2015)

    Article  Google Scholar 

  16. D.H. Nam, R.H. Kim, D.W. Han, H.S. Kwon, Electrochim. Acta 66, 126 (2012)

    Article  Google Scholar 

  17. Y. Liu, L. Liao, J. Li, C. Pan, J. Phys. Chem. C 111, 5050 (2007)

    Article  Google Scholar 

  18. T. Yu, X. Zhao, Z. Shen, Y. Wu, W. Su, J. Cryst. Growth 268, 590 (2004)

    Article  Google Scholar 

  19. Q. Zhang, J. Wang, D. Xu, Z. Wang, X. Li, K. Zhang, J. Mater. Chem. A 2, 3865 (2014)

    Article  Google Scholar 

  20. K. Chen, D. Xue, Phys. Chem. Chem. Phys. 16, 11168 (2014)

    Article  Google Scholar 

  21. S. Laruelle, S. Grugeon, P. Poizot, M. Dolle, L. Dupont, J. Tarascon, J. Electrochem. Soc. 149, A627 (2002)

    Article  Google Scholar 

  22. J. Morales, L. Sánchez, F. Martin, J.R. Ramos-Barrado, M. Sánchez, Electrochim. Acta 49, 4589 (2004)

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the Grants from National Natural Science Foundation of China (Nos. 11474244, 11504312), Scientific Research Fund of Hunan Provincial Education Department (No. 15C1322), National Basic Research Program of China (2015CB921103), and the Program for Changjiang Scholars and Innovative Research Team in University (IRT13093).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jun Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, J., Tang, H., Wang, Y. et al. Thermally oxidation synthesis of CuO nanoneedles on Cu foam and its enhanced lithium storage performance. J Mater Sci: Mater Electron 28, 2353–2357 (2017). https://doi.org/10.1007/s10854-016-5803-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-016-5803-8

Keywords

Navigation