Skip to main content
Log in

Room-temperature deposition of flexible transparent conductive Ga-doped ZnO thin films by magnetron sputtering on polymer substrates

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Flexible Ga doped ZnO transparent conductive films were prepared on polymer substrates at room temperature by RF magnetron sputtering. The effect of the Ar flow rate is more important than that of r.f. power and sputtering pressure. The dependence of the structural, electrical, optical and adhesive properties of flexible Ga doped ZnO transparent conductive thin films on the Ar flow rate was investigated for the first time. When the Ar flow rate is 40 sccm, the residual stress is changed from compressive stress to tensile stress, indicating the crystallinity of the film is best. And the lowest square resistance of 7.9 Ω/sq. is obtained at the Ar flow rate of 40 sccm. Regardless of the Ar flow rate, the optical transmittance in the visible light of all the films is about 90%. The best adhesive behavior is obtained at the Ar flow rate of 40 sccm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. W.C. Tsai, S.R. Thomas, C.H. Hsu, Y.C. Huang, J.Y. Tseng, T.T. Wu, C. Chang, Z. M. Wang, J.M. Shieh, C.H. Shen, Y.L. Chueh, J. Mater. Chem. A 4, 6980–6988 (2016)

    Article  Google Scholar 

  2. E. Kim, H. Cho, K. Kim, T.W. Koh, J. Chung, J. Lee, Y.K. Park, S. Yoo. Adv. Mater. 27, 1624–1631 (2015)

    Article  Google Scholar 

  3. N. Formica, P.M. Perez, D.S. Ghosh, D. Janner, T.L. Chen, M. Huang, S. Garner, J. Martorell, V. Pruneri, ACS Appl. Mater. Interfaces 7, 4541–4548 (2015)

    Article  Google Scholar 

  4. L. Gong, J.G. Lu, Z.Z. Ye, Sol. Energy Mater. Sol. Cells 95, 1826–1830 (2011)

    Article  Google Scholar 

  5. A. Catellani, A. Ruini, A. Calzolari, J. Mater. Chem. C 3, 8419–8424 (2015)

    Article  Google Scholar 

  6. J. Han, H. Gong, X. Yang, Z. Qiu, M. Zi, X. Qiu, H. Wang, B. Cao, Appl. Surf. Sci. 332, 549–556 (2015)

    Article  Google Scholar 

  7. L.M. Trinca, A.C. Galca, G. Aldica, R. Radu, I. Mercioniu, L. Pintilie, Appl. Surf. Sci. 364, 365–370 (2016)

    Article  Google Scholar 

  8. J. Nomoto, H. Makino, T. Yamamoto, J. Appl. Phys. 117, 045304-1-9 (2015)

    Article  Google Scholar 

  9. S. Chen, M. E.A. Warwick, R. Binions, Sol. Energy Mater. Sol. C 137, 202–209 (2015)

    Article  Google Scholar 

  10. E. Polydorou, A. Soultati, M. Vasilopoulou, J. Mater. Chem. C 4, 691–703 (2016)

    Article  Google Scholar 

  11. S. K. Swami, N. Chaturvedi, A. Kumar, V. Dutta, Prog. Photovolt. 24, 74–82 (2016)

    Article  Google Scholar 

  12. K. Ravichandran, R. Anandhi, K. Karthika, P.V. Rajkumar, N. Dineshbabu, C. Ravidhas, Superlattices Microst. 83, 121–130 (2015)

    Article  Google Scholar 

  13. H.S. Chin, L.S. Chao, C.C. Wu, Mater. Res. Bull. 79, 90–96 (2016)

    Article  Google Scholar 

  14. W.J. Yang, C.C. Tsao, C.Y. Hsu, H.C. Chang, C.P. Chou, J.Y. Kao, J. Am. Ceram. Soc. 95, 2140–2147 (2012)

    Article  Google Scholar 

  15. T. Suzuki, H. Chiba, T. Kawashima, K. Washio, Thin Solid Films 605, 53–56 (2016)

    Article  Google Scholar 

  16. X. Zhang, L. Zhu, H. Xu, L. Chen, Y. Guo, Z. Ye, J. Alloy. Compd. 614, 71–74 (2014)

    Article  Google Scholar 

  17. S.B. Ameur, A. Barhoumi, R. Mimouni, M. Amlouk, H. Guermazi, Superlattices Microst. 84, 99–112 (2015)

    Article  Google Scholar 

  18. J.L. Wu, Y.C. Chen, H.Y. Lin, S.Y. Chu, C.C. Chang, C.J. Wu, Y.D. Juang, IEEE Trans. Electron. Devices 60, 2324–2330 (2013)

    Article  Google Scholar 

  19. H.R. Choi, S.K. Eswaran, S.M. Lee, S.Y. Cho, ACS Appl. Mater. Interfaces 7, 17569–17572 (2015)

    Article  Google Scholar 

  20. D.L. Zhu, Q. Wang, S. Han, P.J. Cao, W.J. Liu, F. Jia, Y.X. Zeng, X.C. Ma, Y.M. Lu, Appl. Surf. Sci 298, 208–213 (2014)

    Article  Google Scholar 

  21. S. Inguva, R. KVijayaraghavan, E. McGlynn, J.P. Mosnier, Mater. Res. Express 2, 096401-1-17 (2015)

    Article  Google Scholar 

  22. A. Hadri, M. Taibi, M. loghmarti, C. Nassiri, T.S. Tlemcani, A. Mzerd, Thin Solid Films 601, 7–12 (2016)

    Article  Google Scholar 

  23. Q. Huang, Y. Wang, S. Wang, D. Zhang, Y. Zhao, X. Zhang, Thin Solid Films 520, 5960–5964 (2012)

    Article  Google Scholar 

  24. D.S. Kim, J.H. Park, S.J. Lee, K.J. Ahn, M.S. Lee, M.H. Ham, W. Lee, J.M. Myoung, Mater. Sci. Semicon. Proc. 16, 997–1001 (2013)

    Article  Google Scholar 

  25. W. Yang, Z. Liu, D.L. Peng, F. Zhang, H. Huang, Y. Xie, Z. Wu, Appl. Surf. Sci. 255, 5669–5673 (2009)

    Article  Google Scholar 

  26. H. Zhu, E. Bunte, J. Hüpkes, H. Siekmann, S.M. Huang, Thin Solid Films 517, 3161–3166 (2009)

    Article  Google Scholar 

  27. V. Sammelselg, J. Aarik, A. Aidla, A. Kasikov, E. Heikinheimo, M. Peussa, L. Niinisto, J. Anal. Atomic Spectrom. 14, 523–527 (1999)

    Article  Google Scholar 

  28. M. Kolbe, B. Beckhoff, M. Krumrey, G. Ulm, Spectrochim. Acta Part B 60, 505–510 (2005)

    Article  Google Scholar 

  29. B.D. Callity, S.R. Stock, Elements of X-ray diffraction (Addison Wesley, London, 1959), p. 99

    Google Scholar 

  30. L. Gong, Y. Liu, X. Gu, J. Lu, J. Zhang, Z. Ye, Z. Chen, L. Li, Mater. Sci. Semicon. Proc. 26, 276–281 (2014)

    Article  Google Scholar 

  31. S. Fernández, J.D. Santos, C. Munuera, M. García-Hernández, F.B. Naranjo, Sol. Energy Mater. Sol. C 133, 170–179 (2015)

    Article  Google Scholar 

  32. R. Cebulla, R. Wendt, K. Ellmer, J. Appl. Phys. 83, 1087–1095 (1998)

    Article  Google Scholar 

  33. L. Gong, J. Lu, Z. Ye, Sol. Energy Mater. Sol. C 94, 937–941 (2010)

    Article  Google Scholar 

  34. D.S. Liu, C.Y. Wu, J. Phys. D 43, 175301-1-10 (2010)

    Google Scholar 

Download references

Acknowledgements

This work was supported by National Natural Science Foundation of China (Contract no.51302021), Scientific Research Fund of Hunan Provincial Education Department (Contract no. 13C1025), the Hunan provincial Engineering Research Center of Electric transportation and smart distribution network (Changsha University of Science & Technology).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Li Gong or Liang-Xing Jiang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gong, L., Liu, YZ., Liu, FY. et al. Room-temperature deposition of flexible transparent conductive Ga-doped ZnO thin films by magnetron sputtering on polymer substrates. J Mater Sci: Mater Electron 28, 6093–6098 (2017). https://doi.org/10.1007/s10854-016-6286-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-016-6286-3

Keywords

Navigation