Skip to main content

Advertisement

Log in

Tunable luminescent spectra via energy transfers between different lattice sites in Ce3+, Mn2+ codoped Ba9Lu2Si6O24 phosphors for NUV-based warm white LED applications

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

A series of Ce3+–Mn2+ codoped Ba9Lu2Si6O24 (BLS) were synthesized by high-temperature solid-state reactions. The 380–410 nm excitation band of Ce3+ at the Lu sites (Ce(1)) matches well with the emission light of commercial near-ultraviolet (NUV) light-emitting diode (LED) chips. Under the Ce(1) excitation, BLS:Ce3+, Mn2+ exhibited a tunable emission from blue–green to yellow–orange via energy transfers (ETs) from Ce(1) to Mn2+. The ET was demonstrated to be of the resonant type via a dipole–quadrupole mechanism. At room temperature (RT), the optimal internal and external quantum efficiencies (QEs) of BLS:Ce3+, Mn2+ were determined as 79 and 42%. At 150 °C, 85% of the RT QE still can be remained, showing a high thermal stability. A warm white LED (WLED) with a color rendering index of 84 and a correlated color temperature of 3660 K was obtained by combining a 395 nm NUV chip with the phosphor and CaAlSiN3:Eu2+. The efficiency reaches 17 lm W−1 at 20 mA, which is better than the value of most NUV-based WLEDs. These results indicate the promising application of the phosphor as an attractive candidate for WLEDs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. E.F. Schubert, J.K. Kim, Science 308(5726), 1274–1278 (2005)

    Article  Google Scholar 

  2. S. Pimputkar, J.S. Speck, S.P. DenBaars, S. Nakamura, Nat. Photonics 3(32), 180–182 (2009)

    Article  Google Scholar 

  3. J.Y. Tsao, M.H. Crawford, M.E. Coltrin, A.J. Fischer, D.D. Koleske, G.S. Subramania, G.T. Wang, J.J. Wiere, R.F. Karlicek, Adv. Opt. Mater. 2(9), 809–836 (2014)

    Article  Google Scholar 

  4. J. Meyer, F. Tappe, Adv. Opt. Mater. 3(4), 424–430 (2014)

    Article  Google Scholar 

  5. H. Xu, Q. Sun, Z. An, Y. Wei, X. Liu, Coord. Chem. Rev. 15(293), 228–249 (2015)

    Article  Google Scholar 

  6. W. Tian, K. Song, F. Zhang, P. Zheng, J. Deng, J. Jiang, J. Xu, H. Qin, J. Alloys Compd 638, 249–253 (2015)

    Article  Google Scholar 

  7. H. Dong, L.-D. Sun, C.-H. Yan, Chem. Soc. Rev 6(44), 1608–1634 (2015)

    Article  Google Scholar 

  8. X. Wang, Q. Liu, Y. Bu, C.-S. Liu, T. Liu, X. Yan, RSC Adv. 105(5), 86219–86236 (2015)

    Article  Google Scholar 

  9. V. Bachmann, C. Ronda, A. Meijerink, Chem. Mater. 21(10), 2077–2084 (2009)

    Article  Google Scholar 

  10. P. Schlotter, R. Schmidt, J. Schneider, Appl. Phys. A 64(4), 417–418 (1997)

    Article  Google Scholar 

  11. M. Shang, C. Li, J. Lin, Chem. Soc. Rev. 43, 1372–1386 (2014)

    Article  Google Scholar 

  12. W.R. Liu, C.H. Huang, C.W. Yeh, J.C. Tsai, Y.C. Chiu, Y.T. Yeh, R.S. Liu, Inorg. Chem. 51(18), 9636–9641 (2012)

    Article  Google Scholar 

  13. C.C. Lin, Y.P. Liu, Z.R. Xiao, Y.K. Wang, B.M. Cheng, R.S. Liu, ACS Appl. Mater. Interfaces 6(12), 9160–9172 (2014)

    Article  Google Scholar 

  14. C.H. Huang, Y.C. Chiu, Y.T. Yeh, T.S. Chan, T.M. Chen, ACS Appl. Mater. Interfaces 4(12), 6661–6668 (2012)

    Article  Google Scholar 

  15. Z. Xia, Y. Zhang, M.S. Molokeev, V.V. Atuchin, J. Phys. Chem. C 117(40), 20847–20854 (2013)

    Article  Google Scholar 

  16. S.P. Lee, T.S. Chan, T.M. Chen, ACS Appl. Mater. Interfaces 7(1), 40–44 (2015)

    Article  Google Scholar 

  17. X. Wang, Y. Bu, X. Yan, P. Cai, J. Wang, L. Qin, T. Vu, H.J. Seo, Opt. Lett. 22(41), 5314–5317 (2016)

    Article  Google Scholar 

  18. N. Komuro, M. Mikami, Y. Shimomura, E.G. Bithell, A.K. Cheetham, J. Mater. Chem. C 3(1), 204–210 (2015)

    Article  Google Scholar 

  19. S. Ye, F. Xiao, Y.X. Pan, Y.Y. Ma, Q.Y. Zhang, Mater. Sci. Eng. R 1(71), 1–34 (2010)

    Article  Google Scholar 

  20. W. Lü, N. Guo, Y. Jia, Q. Zhao, W. Lv, M. Jiao, B. Shao, H. You, Inorg. Chem. 52(6), 3007–3312 (2013)

    Article  Google Scholar 

  21. L. Bian, F. Du, S. Yang, Q. Ren, Q.L. Liu, J. Lumin. 137, 168–172 (2013)

    Article  Google Scholar 

  22. S. Park, Mater. Lett 135, 59–62 (2014)

    Article  Google Scholar 

  23. J. Brgoch, C.K.H. Borg, K.A. Denault, A. Mikhailovsky, S.P. DenBaars, R. Seshadri, Inorg. Chem. 52(14), 8010–8016 (2013)

    Article  Google Scholar 

  24. X. Zhang, Y. Liu, J. Lin, Z. Hao, Y. Luo, J. Lumin. 146, 321–324 (2014)

    Article  Google Scholar 

  25. L. Bian, C.W. Liu, J. Gao, X.P. Jing, RSC Adv. 85(5), 69458–69465 (2015)

    Article  Google Scholar 

  26. Y. Liu, J. Zhang, C. Zhang, J. Xu, G. Liu, J. Jiang, H. Jiang, Adv. Opt. Mater. 3, 1096–1011 (2015)

  27. K. Song, J. Zhang, Y. Liu, C. Zhang, J. Jiang, H. Jiang, H. Qin, J. Phys. Chem. C 119(43), 24558–24563 (2015)

    Article  Google Scholar 

  28. Y. Liu, J. Zhang, C. Zhang, J. Jiang, H. Jiang, J. Phys. Chem. C 120(4), 2362–2370 (2016)

    Article  Google Scholar 

  29. C. Zhang, Y. Liu, J. Zhang, X. Zhang, J. Zhang, Z. Cheng, J. Jiang, H. Jiang, Mater. Res. Bull. 80, 288–294 (2016)

  30. S.A. Khan, Z. Hao, W. Hu, L. Hao, X. Xu, J. Mater. Sci. 52, 10927–10937 (2017)

    Article  Google Scholar 

  31. S.A. Khan, Z. Hao, W. Hu, L. Hao, H. Abadikhah, X. Xu, J. ACS Omega 2, 6270–6277 (2017)

    Article  Google Scholar 

  32. B.H. Toby, J. Appl. Crystallogr 34, 210–213 (2001)

    Article  Google Scholar 

  33. A.C. Larson, R.B.V. Dreele, Los Alamos National Laboratory Report LAUR (2000)

  34. L.H. Wang, L.F. Schneemeyer, R.J. Cava, T. Siegrist, J. Solid. State. Chem. 113(1), 211–214 (1994)

    Article  Google Scholar 

  35. D.T. Palumbo, J.J. Brown Jr., J. Electrochem. Soc. 117(9), 1184–1188 (1970)

    Article  Google Scholar 

  36. L. Wang, X. Zhang, Z. Hao, Y. Luo, J. Zhang, X. Wang, J. Appl. Phys. 108, 093515 (2010)

    Article  Google Scholar 

  37. H. Inokuti, F. Hirayama, J. Chem. Phys. 43(6), 1978–1989 (1965)

    Article  Google Scholar 

  38. D.L. Dexter, J. Chem. Phys. 21(5), 836–850 (1953)

    Article  Google Scholar 

Download references

Acknowledgements

This work is financially supported by the National Natural Science Foundation of China (NSFC11404351, 51672063, 54102317), Project of Science and Technology of Zhejiang Province, China (2016C31110).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kaixin Song.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 79 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, J., Liu, Y., Song, K. et al. Tunable luminescent spectra via energy transfers between different lattice sites in Ce3+, Mn2+ codoped Ba9Lu2Si6O24 phosphors for NUV-based warm white LED applications. J Mater Sci: Mater Electron 29, 4547–4556 (2018). https://doi.org/10.1007/s10854-017-8404-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-017-8404-2

Navigation