Skip to main content
Log in

Investigations on preferentially oriented Al-doped ZnO films developed using rf magnetron sputtering

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Preferentially oriented Al-doped ZnO (AZO) films of thickness 0.5–4 µm are prepared using rf magnetron sputtering. The structural, optical and electrical properties of the films deposited on glass substrates are analyzed using X-ray diffraction (XRD), field effect scanning electron microscope (FESEM), energy dispersive X-ray (EDX) analyses, Raman spectroscopy, UV–visible (UV–Vis) spectroscopy, Fourier transform infrared (FTIR) spectroscopy and four-point probe measurements. The observed deposition rate is 16 ± 0.6 nm/min. EDX results confirm an Al content of (2.6 ± 0.3) % in the films. XRD results show that the deposited films are crystalline and are preferentially oriented along (002) plane with their c-axis perpendicular to the substrate plane. The average crystallite size (22–39 nm) increases with film thickness. FESEM micrographs confirm that the surface morphology of the films is rough and shows irregular hills and valleys like patterns due to grain overlapping. Raman spectra show A1 (LO) and A1 (TO) modes of wurtzite ZnO and three prominent anomalous modes 273, 510 and 577 cm−1 which are the characteristics of doped ZnO. FTIR results confirm the presence of Zn–O and Al–O stretching modes in the films. Optical transmittance of the films at 550 nm decreases from 77 to 25% with the increase in film thickness. Their band gap also decreases from 3.39 eV to 2.53 eV. The resistivity of the films gradually reduces beyond a thickness of 1 µm to 1.42 × 10−4 Ωcm. The obtained resistivity values are comparable to that of In-doped SnO2 (ITO).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. T. Minami, Semicond. Sci. Technol. 20, S35–S44 (2005)

    Article  Google Scholar 

  2. T. Minami, T. Miyata, Thin Solid Films 517, 1474–1477 (2008)

    Article  Google Scholar 

  3. X. Yu, T.J. Marks, A. Facchetti, Nat. Mater. 15, 383 (2016)

    Article  Google Scholar 

  4. Ü Özgür, Ya.I. Alivov, C. Liu, A. Teke, M.A. Reshchikov, S. Doğan, V. Avrutin, S.-J. Cho, H. Morkoç, J. Appl. Phys. 98, 11 (2005)

    Article  Google Scholar 

  5. S.E. Pust, J.P. Becker, J. Worbs, S.O. Klemm, K.J.J. Mayrhofer, J. Hüpkes, J. Electrochem. Soc. 158, D413–D419 (2011)

    Article  Google Scholar 

  6. T. Minami, MRS Bull. 25, 38–44 (2000)

    Article  Google Scholar 

  7. T. Minami, H. Nanto, S. Takata, Appl. Phys. Lett. 41, 958–960 (1982)

    Article  Google Scholar 

  8. H. Nanto, T. Minami, S. Shooji, S. Takata, J. Appl. Phys. 55, 1029–1034 (1984)

    Article  Google Scholar 

  9. N. Srinatha, Y. No, V.B. Kamble, S. Chakravarty, N. Suriya Murthy, B. Angadi, A. Umarji, W. Choi, RSC Adv. 6, 9779–9788 (2016)

    Article  Google Scholar 

  10. T.M.K. Thandavan, S.M.A. Gani, C. San Wong, R.M. Nor, PLoS ONE 10, 0121756 (2015)

    Article  Google Scholar 

  11. M. Shahid, K. Deen, A. Ahmad, M. Akram, M. Aslam, W. Akhtar, Appl. Nanosci. 6, 235–241 (2016)

    Article  Google Scholar 

  12. L. Cai, G. Jiang, C. Zhu, D. Wang, Phys. Status Solidi A 206, 1461–1464 (2009)

    Article  Google Scholar 

  13. E. Burunkaya, N. Kiraz, Ö Kesmez, H.E. Camurlu, M. Asilturk, E. Arpac, ‎J. Sol Gel Sci. Technol. 55, 171–176 (2010)

    Article  Google Scholar 

  14. S. Majumder, M. Jain, P. Dobal, R. Katiyar, Mater. Sci. Eng. B 103, 16–25 (2003)

    Article  Google Scholar 

  15. M. Caglar, S. Ilican, Y. Caglar, F. Yakuphanoglu, J. Mater. Sci. Mater. Electron. 19, 704–708 (2008)

    Article  Google Scholar 

  16. T. Miyata, Y. Minamino, S. Ida, T. Minami, J. Vac. Sci. Technol. A 22, 1711–1715 (2004)

    Article  Google Scholar 

  17. S. Venkatachalam, Y. Iida, Y. Kanno, Superlattices Microstruct. 44, 127–135 (2008)

    Article  Google Scholar 

  18. D. Sahu, S.Y. Lin, J.L. Huang, Microelectron. J. 38, 245–250 (2007)

    Article  Google Scholar 

  19. M.C. Pan, T.H. Wu, T.A. Bui, W.C. Shih, J. Mater. Sci. Mater. Electron. 23, 418–424 (2012)

    Article  Google Scholar 

  20. Z. Laghfour, T. Ajjammouri, S. Aazou, S. Refki, D. Nesterenko, A. Rahmouni, M. Abd-Lefdil, A. Ulyashin, A. Slaoui, Z. Sekkat, J. Mater. Sci. Mater. Electron. 26, 6730–6735 (2015)

    Article  Google Scholar 

  21. J.H. Lee, J. Electroceramics 23, 512–518 (2009)

    Article  Google Scholar 

  22. S.S. Lin, J.L. Huang, Surf. Coat. Technol. 185, 222–227 (2004)

    Article  Google Scholar 

  23. M. Suchea, S. Christoulakis, N. Katsarakis, T. Kitsopoulos, G. Kiriakidis, Thin Solid Films 515, 6562–6566 (2007)

    Article  Google Scholar 

  24. K.H. Ri, Y. Wang, W.L. Zhou, J.X. Gao, X.J. Wang, J. Yu, Appl. Surf. Sci. 258, 1283–1289 (2011)

    Article  Google Scholar 

  25. D.S. Ginley, C. Bright, MRS Bull. 25, 15–18 (2000)

    Article  Google Scholar 

  26. K.H. Kim, K.C. Park, D.Y. Ma, J. Appl. Phys. 81, 7764–7772 (1997)

    Article  Google Scholar 

  27. Q. Hou, F. Meng, J. Sun, Nanoscale Res. Lett. 8, 144 (2013)

    Article  Google Scholar 

  28. W. Yang, Z. Liu, D.L. Peng, F. Zhang, H. Huang, Y. Xie, Z. Wu, Appl. Surf. Sci. 255, 5669–5673 (2009)

    Article  Google Scholar 

  29. C. Guillén, J. Herrero, Vacuum 84, 924–929 (2010)

    Article  Google Scholar 

  30. B.C. Mohanty, B.K. Kim, D.H. Yeon, Y.H. Jo, I.J. Choi, S.M. Lee, Y.S. Cho, J. Electrochem. Soc. 159, H96–H101 (2011)

    Article  Google Scholar 

  31. A. Van der Drift, Philips Res. Rep 22, 267 (1967)

    Google Scholar 

  32. N. Fujimura, T. Nishihara, S. Goto, J. Xu, T. Ito, J. Cryst. Growth 130, 269–279 (1993)

    Article  Google Scholar 

  33. S.Y. Pung, K.L. Choy, X. Hou, C. Shan, Nanotechnology 19, 435609 (2008)

    Article  Google Scholar 

  34. F. Paraguay, D.W. Estrada, L.D.R. Acosta, N.E. Andrade, M.M. Yoshida, Thin Solid Films 350, 192–202 (1999)

    Article  Google Scholar 

  35. C.C. Ting, S.Y. Chen, D.M. Liu, Thin Solid Films 402, 290–295 (2002)

    Article  Google Scholar 

  36. S. Rodil, O.G. Zarco, E. Camps, H. Estrada, M. Lejeune, L. Bourja, A. Zeinert, Thin Solid Films 636, 384–391 (2017)

    Article  Google Scholar 

  37. A. Wójcik, M. Godlewski, E. Guziewicz, R. Minikayev, W. Paszkowicz, J. Cryst. Growth 310, 284–289 (2008)

    Article  Google Scholar 

  38. V.D. Mote, Y. Purushotham, B.N. Dole, J. Theor. Appl. Phys. 6, 6 (2012)

    Article  Google Scholar 

  39. G. Kaur, A. Mitra, K. Yadav, Prog. Nat. Sci. Mater. Int 25, 12–21 (2015)

    Article  Google Scholar 

  40. J. Chang, H.L. Wang, M.H. Hon, J. Cryst. Growth 211, 93–97 (2000)

    Article  Google Scholar 

  41. J.A. Thornton, J. Vac. Sci. Technol. 11, 666–670 (1974)

    Article  Google Scholar 

  42. J. Calleja, M. Cardona, Phys. Rev. B 16, 3753 (1977)

    Article  Google Scholar 

  43. J. Serrano, A. Romero, F. Manjon, R. Lauck, M. Cardona, A. Rubio, Phys. Rev. B 69, 094306 (2004)

    Article  Google Scholar 

  44. H. Liu, S. Chua, Appl. Phys. Lett. 96, 091902 (2010)

    Article  Google Scholar 

  45. C. Bundesmann, N. Ashkenov, M. Schubert, D. Spemann, T. Butz, E. Kaidashev, M. Lorenz, M. Grundmann, Appl. Phys. Lett. 83, 1974–1976 (2003)

    Article  Google Scholar 

  46. A. Kaschner, U. Haboeck, M. Strassburg, M. Strassburg, G. Kaczmarczyk, A. Hoffmann, C. Thomsen, A. Zeuner, H. Alves, D. Hofmann, et al. Appl. Phys. Lett. 80, 1909–1911 (2002)

    Article  Google Scholar 

  47. J. Tauc, R. Grigorovici, A. Vancu, Phys. Status Solidi B 15, 627–637 (1966)

    Article  Google Scholar 

  48. M. Nafees, W. Liaqut, S. Ali, M.A. Shafique, Appl. Nanosci. 3, 49–55 (2013)

    Article  Google Scholar 

  49. N.R. Yogamalar, A.C. Bose, J. Alloys Compd. 509, 8493–8500 (2011)

    Article  Google Scholar 

  50. P.K. Kannan, R. Saraswathi, J.B.B. Rayappan, Sens. Actuator A 164, 8–14 (2010)

    Article  Google Scholar 

  51. A. Srivastava, M. Praveen, S. Arora, B. Gupta, S. Chakraborty, S. Chandra, H. Toyoda, Bahadur, J. Mater. Sci. Technol. 26, 986–990 (2010)

    Article  Google Scholar 

  52. F. Meriche, T. Touam, A. Chelouche, M. Dehimi, J. Solard, A. Fischer, A. Boudrioua, L.-H. Peng, Electron. Mater. Lett. 11, 862–870 (2015)

    Article  Google Scholar 

  53. R. Menon, V. Gupta, H. Tan, K. Sreenivas, C. Jagadish, J. Appl. Phys. 109, 064905 (2011)

    Article  Google Scholar 

  54. A. Djelloul, M. Aida, J. Bougdira, J. Lumin. 130, 2113–2117 (2010)

    Article  Google Scholar 

  55. S. Alias, A. Ismail, A. Mohamad, J. Alloys Compd. 499, 231–237 (2010)

    Article  Google Scholar 

  56. A. Mallika, A.R. Reddy, K.S. Babu, K.V. Reddy, Ceram. Int. 40, 12171–12177 (2014)

    Article  Google Scholar 

  57. Y. Li, J. Wang, Y. Kong, J. Zhou, J. Wu, G. Wang, H. Bi, X. Wu, W. Qin, Q. Li, Sci. Rep. 6, 19187 (2016)

    Article  Google Scholar 

  58. G.C. Yi, B.W. Wessels, Appl. Phys. Lett. 70, 357–359 (1997)

    Article  Google Scholar 

  59. V. Musat, B. Teixeira, E. Fortunato, R. Monteiro, P. Vilarinho, Surf. Coat. Technol. 180, 659–662 (2004)

    Article  Google Scholar 

  60. M. Ohyama, H. Kozuka, T. Yoko, J. Am. Ceram. Soc. 81, 1622–1632 (1998)

    Article  Google Scholar 

  61. B. Nasr, S. Dasgupta, D. Wang, N. Mechau, R. Kruk, H. Hahn, J. Appl. Phys. 108, 103721 (2010)

    Article  Google Scholar 

Download references

Acknowledgements

The authors wish to express their sincere thanks to UGC DAE Consortium for Scientific Research, Indore for XRD measurements. The authors also want to acknowledge the cooperation of the Central Instrumental Facility (CIF), Birla Institute of Technology, Ranchi for rest of the characterization work. One of the authors (Nalin Prashant Poddar) is thankful to Birla Institute of Technology, Ranchi for the award of Institute Fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. K. Mukherjee.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Poddar, N.P., Mukherjee, S.K. Investigations on preferentially oriented Al-doped ZnO films developed using rf magnetron sputtering. J Mater Sci: Mater Electron 30, 537–548 (2019). https://doi.org/10.1007/s10854-018-0320-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-018-0320-6

Navigation