Skip to main content
Log in

The crystallization of Hydroxyapatite in the presence of sodium alginate

  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

The effect of sodium alginate on the crystal growth of hydroxyapatite (HAP) was investigated at sustained supersaturation by the constant composition technique. Sodium alginate was found to inhibit HAP crystal growth at low concentrations and reduced the crystal growth rates by 42–86% for inhibitor concentrations of 2.1 × 10− 7–12.6 × 10− 7 mol/l. The inhibition effect on the crystal growth rate may be explained possibly through adsorption onto the active growth sites. A detailed kinetics analysis suggested a Langmuir-type adsorption of the alginate on HAP surface and a value of 1.63 × 107 l/mol was obtained for the affinity constant of sodium alginate for the surface of HAP. The apparent order for the crystallization reaction was determined to be approximately 2, thus suggesting a surface diffusion controlled spiral growth mechanism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. MILLIS and F. B. REED, Biochem. J. 41 (1947) 273.

    CAS  Google Scholar 

  2. G. LEVY and K. RAO, J. Pharm. Sci. 61 (1972) 279.

    CAS  PubMed  Google Scholar 

  3. M. BREMER and T. SCOTT, “Concise Encyclopedia of Biochemistry” (de Gryrter, Berlin, 1983) p. 17.

    Google Scholar 

  4. H .F. MARK, N. G. GAYLORD and N. M. BIKALES, “Encyclopedia of Polymer Science and Technology” (Wiley, New York, 1969) Vol. 11, p. 409.

    Google Scholar 

  5. H .F. MARK, N. M. BIKALES, C. G. OVERBERGER, G. MENGES and J. T. KROSWIT, “Encyclopedia of Polymer Science and Engineering” (Wiley, New York, 1988) Vol. 13, p. 121.

    Google Scholar 

  6. W. F. NEUMAN, “Bone Material and Calcifications Mechanisms. In Fundamental and Clinical Bone Physiology,” edited by J. B. Lippincott (Phyladelphia, PA, 1980) p. 83.

  7. G. H. NANCOLLAS, J. Crystal Growth 42 (1977) 185.

    Article  CAS  Google Scholar 

  8. A. L. BOSKEY and P. G. BULLOGH, Scan. Electron Microsc. 28 (1984) 511.

    Google Scholar 

  9. S. KOUTSOPOULOS, A. KONTOGEORGOU, J. PETROHEILOS and E. DALAS, J. Mater. Sci.: Mater. Med. 9 (1998) 421.

    Article  CAS  Google Scholar 

  10. P. G. KOUTSOUKOS, Z. AMJAD, M. B. TOMSON and G. H. NANCOLLAS, J. Am. Chem. Soc. 102 (1980) 1553.

    Article  CAS  Google Scholar 

  11. M. B. TOMSON and G. H. NANCOLLAS, Science 200 (1978) 1059.

    CAS  Google Scholar 

  12. P. G. KOUTSOUKOS, Ph.D. Thesis, State University of New York at Buffalo, Buffalo, NY, 1980.

    Google Scholar 

  13. R. G. BATES, “Determination of pH, Theory and Practice” 2nd edn., (Wiley, New York, 1973).

    Google Scholar 

  14. S. KOUTSOPOULOS, Ph.D. Thesis, University of Patras, 1997.

  15. ASTM Card File No. 9-432.

  16. H. HOHL, P. G. KOUTSOUKOS and G. H. NANCOLLAS, J. Crystal Growth 57 (1982) 325.

    Article  CAS  Google Scholar 

  17. J. NYVLT, O. SOHNEL, N. MATUCHOVA and M. BROUL, “The Kinetics of Industrial Crystallization” (Elsevier, Amsterdam, 1985) p. 68, 284.

    Google Scholar 

  18. L. REYNOLDS and G. WILKINSON, Inorg. Nucl. Chem. 9 (1959) 86.

    Article  Google Scholar 

  19. N. CADRERA and D. A. VERMILYEA, “Growth and Perfection of Crystals” (Wiley, New York, 1958) p. 393.

    Google Scholar 

  20. I. LANGMUIR, J. Am. Chem. Soc. 40 (1918) 1361.

    Article  CAS  Google Scholar 

  21. P. G. KOUTSOUKOS, Z. AMZAD and G. H. NANCOLLAS, J. Colloid Int. Sci. 83 (1981) 599.

    Article  CAS  Google Scholar 

  22. Z. AMZAD, Langmuir 3 (1987) 1063.

    Article  Google Scholar 

  23. E. DALAS and P. G. KOUTSOUKOS, J. Chem. Soc. Faraday Trans. 85 (1989) 2465.

    Article  CAS  Google Scholar 

  24. CH. MANIATIS, TH. ZAFIROPOULOS and P. G. KOUTSOUKOS, Langmuir 7 (1991) 1542.

    Article  CAS  Google Scholar 

  25. M. DALPI, E. KARAYANNI and P. G. KOUTSOUKOS, J. Chem. Soc. Faradey Trans. 89 (1993) 965.

    Article  CAS  Google Scholar 

  26. E. DALAS, N. KLOURAS and CH. MANIATIS, Langmuir 8 (1992) 1003.

    Article  CAS  Google Scholar 

  27. S. KOUTSOPOULOS, I. DEMAKOPOULOS, X. ARGIRIOU, E. DALAS, N. KLOURAS and N. SPANOS, ibid. 11 (1995) 1831.

    Article  CAS  Google Scholar 

  28. S. KOUTSOPOULOS, E. DALAS, N. TZAVELLAS, N. KLOURAS and P. AMORATIS, J. Cryst. Growth 183 (1998) 251.

    Article  CAS  Google Scholar 

  29. S. KOUTSOPOULOS, E. DALAS, N. TZAVELLAS and N. KLOURAS, J. Chem. Soc. Faradey Trans. 93 (1997) 4183.

    Article  CAS  Google Scholar 

  30. S. KOUTSOPOULOS, CH. MANIATIS, C. D. XENOS and E. DALAS, Cryst Growth Design 5 (2001) 367.

    Article  Google Scholar 

  31. H. McDOWEL, T. M. GREGORY and W. E. BROWN, J. Res. Natl. Bur. Stds. 81 (1997) 273.

    Google Scholar 

  32. A. E. NIELSEN, Pure Appl. Chem. 53 (1981) 2025.

    CAS  Google Scholar 

  33. G. H. NANCOLLAS, “Biomineralization” (VCH, Weinheim, Germany 1989) p. 156.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Dalas.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Malkaj, P., Pierri, E. & Dalas, E. The crystallization of Hydroxyapatite in the presence of sodium alginate. J Mater Sci: Mater Med 16, 733–737 (2005). https://doi.org/10.1007/s10856-005-2610-9

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10856-005-2610-9

Keywords

Navigation