Skip to main content
Log in

Ion exchanges in apatites for biomedical application

  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

The modification of the composition of apatite materials can be made by several processes corresponding to ion exchange reactions which can conveniently be adapted to current coatings and ceramics and are an alternative to setting up of new synthesis methods. In addition to high temperature thermal treatments, which can partly or almost totally replace the monovalent OH anion of stoichiometric hydroxyapatite by any halogen ion or carbonate, aqueous processes corresponding to dissolution-reprecipitation reactions have also been proposed and used. However, the most interesting possibilities are provided by aqueous ion exchange reactions involving nanocrystalline apatites. These apatites are characterised by the existence on the crystal surface of a hydrated layer of loosely bound mineral ions which can be easily exchanged in solution. This layer offers a possibility to trap mineral ions and possibly active molecules which can modify the apatite properties. Such processes are involved in mineralised tissues and could be used in biomaterials for the release of active mineral species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. J. GLIMCHER, in “Disorders of Bone and Mineral Metabolism”, edited by F. L. Coe and M. J. Favus (Raven Press, New York, 1992) p. 265.

    Google Scholar 

  2. G. DACULSI, J. M. BOULER and R. Z. LEGEROS, Int. Rev. Cytol. 172 (1997) 129.

    CAS  PubMed  Google Scholar 

  3. A. E. PORTER, N. PATEL, J. N. SKEPPER, S. M. BEST and W. BONFIELD, Biomaterials 25 (2004) 3303.

    Article  CAS  PubMed  Google Scholar 

  4. B. FENG, J. Y. CHEN, S. K. OI, J. Z. ZHAO and X. D. ZHANG, ibid. 23 (2002) 173.

    Article  CAS  PubMed  Google Scholar 

  5. Y. W. LI, J. C. LEONG, W. W. LU, K. D. LUK, K. M. CHEUNG, K. Y. CHIU and S. P. CHOW, J. Biomed. Mater. Res. 52 (2000) 164.

    Article  CAS  PubMed  Google Scholar 

  6. T. J. WEBSTER, C. ERGUN, R. H. DOREMUS and R. BIZIOS, ibid. 59 (2002) 312.

    Article  CAS  PubMed  Google Scholar 

  7. H. W. DENISSEN, C. P. KLEIN, L. L. VISCH and A. van den HOOFF, Int. J. Prosthodont. 9 (1996) 142.

    CAS  PubMed  Google Scholar 

  8. C. REY, A. HINA, A. TOFIGHI and M. J. GLIMCHER, Cells Mater. 5 (1995) 345.

    CAS  Google Scholar 

  9. J. C. ELLIOTT and R. A. YOUNG, Nature 13 (1967) 904.

    Google Scholar 

  10. J. C. ELLIOTT, P. E. MACKIE and R. A. YOUNG, Science 180 (1973) 1055.

    CAS  Google Scholar 

  11. G. BONEL, Ann. Chim. 7 (1972) 127.

    CAS  Google Scholar 

  12. S. REDEY, M. NARDIN, D. BERNACHE-ASSOLANT, C. REY, P. DELLANOY, P. MARIE and L. SEDEL, J. Bone Miner. Res. 353–364 (2000).

  13. S. A. REDEY, S. RAZZOUK, C. REY, D. BERNACHE-ASSOLANT, G. LEROY, M. NARDIN and G. COURNOT, ibid. 45 (1999) 140.

    CAS  Google Scholar 

  14. J. C. TROMBE and G. MONTEL, C. R. Acad. Sci. Paris 278 (1974) 1227.

    CAS  Google Scholar 

  15. F. SAMEC and G. MONTEL, ibid. 262 (1966) 837.

    CAS  Google Scholar 

  16. X. RANZ, Thesis INPT, Toulouse, 1996.

  17. W. F. NEUMAN, A. R. TEREPKA, F. CANAS and J. T. TRIFFITT, Calcif. Tissue Res. 2 (1968) 262.

    CAS  PubMed  Google Scholar 

  18. K. BESHAH, C. REY, M. J. GLIMCHER, M. SHIMIZU and R. G. GRIFFIN, J. Solid State Chem. 84 (1990) 71.

    Article  CAS  Google Scholar 

  19. H. SFIHI and C. REY, in “NATO ASI Series II”, edited by J. Fraissard and B. Lapina (Kluwer Academic Publisher, 2002) p. 409.

  20. D. EICHERT, Thesis INPT, Toulouse, 2001.

  21. D. EICHERT, H. SFIHI, M. BANU, S. CAZALBOU, C. COMBES and C. REY, in Proceedings of CIMTEC 2002, Part VI, “Materials in Clinical Applications,” edited by P. Vincenzini (Techna, Faenza, 2003) p. 23.

  22. C. REY, E. STRAWICH and M. J. GLIMCHER, Bull. Inst. Océanographique de Monaco No spécial 14 (1994) 55.

    Google Scholar 

  23. S. CAZALBOU, Thesis INPT, Toulouse, 2000.

  24. J. BUEHLER, P. CHAPPUIS, J. L. SAFFAR, Y. TSOUDEROS and A. VIGNERY, Bone 29 (2001) 176.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Rey.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cazalbou, S., Eichert, D., Ranz, X. et al. Ion exchanges in apatites for biomedical application. J Mater Sci: Mater Med 16, 405–409 (2005). https://doi.org/10.1007/s10856-005-6979-2

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10856-005-6979-2

Keywords

Navigation