Skip to main content
Log in

In vitro characterization of chitosan scaffolds: influence of composition and deacetylation degree

  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

In this study, the influence of degree of deacetylation (DD) and composition on some structural and biological properties of chitosan scaffolds were examined in vitro. 3D chitosan scaffolds of 2% (w/v) and 3% (w/v) composition in different DDs i.e. 75–85% and >85% were prepared by freeze-drying method at −80 °C. We noticed that >85% deacetylated chitosan scaffolds of 2% (w/v) composition has a highly interconnected morphological structure having ∼100 μm pore size with 0.0917 N/mm2 compression modulus. L929 fibroblastic cells were cultured on chitosan scaffolds in order to evaluate their biocompatibilities. Cell culture studies demonstrated that fibroblastic cell attachment and proliferation is affected by DD. The higher deacetylated chitosan scaffolds strongly supported the attachment and proliferation when compared with the lower deacetylated scaffolds. MTT assay indicated that >85% deacetylated chitosan scaffolds of 2% (w/v) composition, having the highest specific growth rate 0.017 h−1 of all, was found to be the most suitable for cell culture studies and a potential candidate for tissue engineering with enhanced biostability and good biocompatibility.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. P. A. SANFORD, G. SJAK-BRAEK and T. ANTHONSEN, in “Chitin and Chitosan” (Elsevier Applied Science, London, 1989) p. 51

  2. B. KRAJEWSKA, Sep. Purif. Technol. 41 (2005) 305

    Article  CAS  Google Scholar 

  3. E. KHOR and L. Y. LIM, Biomaterials 24 (2003) 2339

    Article  CAS  Google Scholar 

  4. E. RUEL-GARIEPY, A. CHENITE, C. CHAPUT, S. GUIRGUIS and J. C. LEROUX, Int. J. Pharm. 203 (2000) 89

    Article  CAS  Google Scholar 

  5. F. L. MI, S. S. SHYU, Y. B. WU, S. T. LEE, J. Y. SHYONG and R. N. HUANG RO, Biomaterials 22 (2001) 165

    Article  CAS  Google Scholar 

  6. L. MA, C. GAO, Z. MAO, J. ZHOU, J. SHEN, X. HU and C. HAN, Biomaterials 24 (2003) 4833

    Article  CAS  Google Scholar 

  7. M. H. HO, D. M. WANG, H. J. HSIEH, H. C. LIU, T. Y. HSIEN, J. Y. LAI and L. T. HOU, Biomaterials 26 (2005) 3197

    Article  CAS  Google Scholar 

  8. R. A. A. MUZZARELLI, M. MATTIOLI-BELMONTE, C. TIETZ, R. BIAGINI, G. FERIOLI, M. A. BRUNELLI, M. FINI, R. GIARDINO, P. ILARI and G. BIAGINI, Biomaterials 15 (1994) 1075

    Article  CAS  Google Scholar 

  9. A. HOEKSTRA, H. STRUSZCZYK and O. KIVEKAS, Biomaterials 19 (1998) 1467

    Google Scholar 

  10. G. PELUSO, O. PETILLO, M. RANIERI, M. SANTIN, L. AMBROSIO, D. CALABRO, B. AVALLONE and G. BALSAMO, Biomaterials 15 (1994) 1215

    Article  CAS  Google Scholar 

  11. C. CHATELET, O. DAMOUR and A. DOMARD, Biomaterials 22 (2001) 261

    Article  CAS  Google Scholar 

  12. T. W. CHUNG, J. YANG, K. Y. CHO, J. W. NAH, S. J. KIM and C. S. CHO, Biomaterials 23 (2002) 2827

    Article  CAS  Google Scholar 

  13. J. K. F. SUH and H. W. T. MATTHEW, Biomaterials 21 (2000) 2589

    Article  CAS  Google Scholar 

  14. K. V. HARISH PRASHANTH, F. S. KITTUR and R. N. THARANATHAN, Carbohydr. Polym. 50 (2002) 27

    Article  CAS  Google Scholar 

  15. I. F. AMARAL, M. LAMGHARI, S. R. SOUSA, P. SAMPAIO, and M. A. BARBOSA, J. Biomed. Mater. Res. 7SA (2005) 387

    Article  Google Scholar 

  16. G. CHEN, T. USHIDA and T. TATEISHI, J. Biomed. Mater. Res. 51 (2000) 273

    Article  CAS  Google Scholar 

  17. T. M. FREYMAN, I. V. YANNAS and L. J. GIBSON, Progr. Mater. Sci. 46 (2001) 273

    Article  CAS  Google Scholar 

  18. G. CHEN, P. ZHOU, N. MEI, X. CHEN and Z. SHAO, J. Mat. Sci: Mat. Med. 15 (2004) 671

    Article  CAS  Google Scholar 

  19. S. V. MADIHALLY, W. HOWARD and T. MATTHEW, Biomaterials 20 (1999) 1133

    Article  CAS  Google Scholar 

  20. J. S. MAO, L. G. ZHAO, Y. J. YIN and K. D. YAO, Biomaterials 24 (2003) 1067

    Article  CAS  Google Scholar 

  21. M. PRASITSILP, R. JENWITHISUK, K. KONGSUWAN, N. DAMRONGCHAI and P. WATTS, J. Mater. Sci. Mater. Med. 11(12) (2000) 773

    Article  CAS  Google Scholar 

  22. K. TOMIHATA and Y. IKADA, Biomaterials 18 (1997) 567

    Article  CAS  Google Scholar 

  23. G. P. CHEN, Y. USHIDA and T. TATEISHI, Macromol. Biosci. 2 (2002) 67

    Article  CAS  Google Scholar 

  24. D. INGBER, S. KARPP, G. PLOPPER, L. HANSED and D. MOONEY, Physical forces and the mammalian cell, Chap. 2, (Academic Press: New York) (1993)

    Google Scholar 

  25. Y. HUANG, S. ONYERI, M. SIEWE, A. MOSHFEGHIAN and S. V. MADIHALLY, Biomaterials 26 (2005) 7616

    Article  CAS  Google Scholar 

  26. Y. WAN, H. WU and D. WEN, Macromol. Biosci. 4 (2004) 882

    Article  CAS  Google Scholar 

Download references

Acknowledgement

This study was financially supported by Turkish Scientific and Research Council (TȔBÌTAK) Project No. 105M097.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Menemşe Gümüşderelioğlu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Seda Tığlı, R., Karakeçili, A. & Gümüşderelioğlu, M. In vitro characterization of chitosan scaffolds: influence of composition and deacetylation degree. J Mater Sci: Mater Med 18, 1665–1674 (2007). https://doi.org/10.1007/s10856-007-3066-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10856-007-3066-x

Keywords

Navigation