Skip to main content

Advertisement

Log in

An electrochemical impedance investigation of the behaviour of anodically oxidised titanium in human plasma and cognate fluids, relevant to dental applications

  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

In dental applications, the contact between the metal implant and the receiving living tissue is made through the oxide layer on the implant surface, which allows the osseointegration process. In dentistry, the passive film formed on titanium seems to be more stable and protective than that formed on the Ti alloys, customarily used in other medical applications. Corrosion of titanium alloys in the mouth can result from the presence of a number of corrosive species, such as the hydrogen ion (H+), sulfide compounds (S2−), dissolved oxygen (O2) and Cl and can result in the release of Ti4+ ions that, in turn, brings about the reduction of alkaline phosphatase activity of osteoblastic cells. The present study reports a time-dependent electrochemical corrosion study of titanium in contact with the following biologically relevant solutions: (i) SBF (simulating the inorganic part of human plasma), (ii) SBF with added ovalbumin (a protein simulating the post-implant environment) and (iii) human plasma. To the best of the authors’ knowledge, this is the first report on the corrosion of Ti in human plasma. The electrochemical measurements are based on electrochemical impedance spectrometry. Impedance spectra were interpreted on the basis of the equivalent-circuit approach and estimates of the time-variation of oxide film thickness and resistance were computed. Surface Raman spectroscopy was used to characterise the structure of as-anodised and corroded TiO2 films: the effects of phosphate and organic incorporation were highlighted. EIS and surface Raman measurements have demonstrated that the corrosion resistance of the oxide films formed on Ti is strongly affected by the presence of biomolecules in the chloride- and phosphate-based aqueous solution. In particular, ovalbumin increases corrosion performance and human plasma is found to be remarkably more aggressive in comparison to SBF. These results suggest some caution in extrapolating corrosion results obtained in simulated biological fluids to the actual behaviour in vivo.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. S. Kothari, P.V. Halton, C.W. Douglas, J. Mater. Sci. 6, 695 (1995)

    Article  CAS  Google Scholar 

  2. T. Sawase, K. Hai, K. Yoshida, K. Baba, R. Hatada, M. Atsuta, J. Dent. 26, 119 (1998)

    Article  CAS  Google Scholar 

  3. Y.-T. Sul, C.B. Johansson, S. Petronis, A. Kroger, A. Weenerger, T. Albrektsson, Biomaterials 23, 1809 (2002)

    Article  CAS  Google Scholar 

  4. M. Wei, A.J. Ruys, M.V. Swain, B.K. Milthorpe, C.C. Sorrell, J. Mater. Sci.: Mater. Med. 16, 101 (2005)

    Article  CAS  Google Scholar 

  5. K. Elagli, M. Traisnel, H.F. Hildebrand, Electrochim. Acta 38, 1769 (1993)

    Article  CAS  Google Scholar 

  6. M. Long, H.J. Rack, Biomaterials 19, 1621 (1998)

    Article  CAS  Google Scholar 

  7. C. Aparicio, F.J. Gil, C. Fonseca, M. Barbosa, J.A. Planell, Biomaterials 23, 263 (2003)

    Article  Google Scholar 

  8. M. Svehla, P. Morberg, B. Zicat, W. Bruce, D. Sonnabend, W.R. Walsh, J. Biomed. Mater. Res. 51, 15 (2000)

    Article  CAS  Google Scholar 

  9. D. Buser, N. Broggini, M. Wieland, R.K. Schenk, A.J. Denzer, D.I. Cochran, B. Horfmann, A. Lussi, S.G. Steinemann, J. Dent. Res. 83, 529 (2004)

    CAS  Google Scholar 

  10. V. Corsari, G. Giavaresi, M. Fini, P. Torricelli, M. Tschon, R. Chiesa, L. Chiusoli, A. salito, A. Volpert, R. Giardino, Biomaterials 26, 4948 (2005)

    Article  CAS  Google Scholar 

  11. D. Botticelli, T. Berglundh, L.G. Persson, J. Linde, J. Clin. Periodontol. 32, 448 (2005)

    Article  Google Scholar 

  12. S.-H. Seung-Han, R.R. Finõnes, C. Daraio, L.-H. Li-Han Chen, S. Jin, Biomaterials 26, 4938 (2005)

    Article  CAS  Google Scholar 

  13. A. Yamagami, Y. Yoshihara, F. Suwa, Int. J. Oral Maxillofac Impants 20, 48 (2005)

    Google Scholar 

  14. J. Pan, D. Thierry, C. Laygraf, Electrochim. Acta 41, 1143 (1996)

    Article  CAS  Google Scholar 

  15. J.L. Gilbert, J. Biomed. Mater. Res. 40, 233 (1998)

    Article  CAS  Google Scholar 

  16. J.E.G. González, J.C. Mirza-Rosca, J. Electroanal. Chem. 471, 109 (1999)

    Article  Google Scholar 

  17. B. Grosgogeat, L. Reclaru, M. Lissac, F. Dalard, Biomaterials 20, 933 (1999)

    Article  CAS  Google Scholar 

  18. N. Ibriş, J.C. Mirza Rosca, J. Electroanal. Chem. 526, 53 (2002)

    Article  Google Scholar 

  19. M. Metikos, A. Kwokal, J. Pijac, Electrochim. Acta 24, 3765 (2003)

    Google Scholar 

  20. A.M. Al-Mayouf, A.A. Al-Swayih, N.A. Al-Mobarak, A.S. Al-Jabab, Mat. Chem. Phys. 86, 320 (2004)

    Article  CAS  Google Scholar 

  21. I.C. Lavos-Valereto, S. Wolynec, I. Ramires, A.C. Guastaldi, I. Costa, J. Mater. Sci.: Mater. Med. 15, 55 (2004)

    Article  CAS  Google Scholar 

  22. C.E.B. Marino, L.H. Mascaro, J. Electroanal. Chem. 568, 115 (2004)

    Article  CAS  Google Scholar 

  23. D. Mareci, C. Bocanu, G. Nemtoi, D. Aelenei, J. Serb. Chem. Soc. 70, 891 (2005)

    Article  CAS  Google Scholar 

  24. A. Wennerberg, A. Ide-Ektassabi, S. Hatkamata, T. Sawase, C. Johansson, T. Albrektsson, A. Martinelli, U. Södervall, H. Oldelius, Clin. Oral. Implants Res. 15, 505 (2004)

    Article  Google Scholar 

  25. M. Pourbaix, Biomaterials 5, 122 (1984)

    Article  CAS  Google Scholar 

  26. K. Litner, J.W. Schultze, U. Stimming, J. Electrochem. Soc. 133, 1561 (1986)

    Article  Google Scholar 

  27. J.M. Bennett, E. Pelletier, G. Albrand, J.P. Borgogno, B. Lazarides, C.K. Carniglia, R.A. Schmell, T.H. Allen, T. Tuttle-Hart, K.H. Guenther, A. Saxer, Appl. Opt. 28, 3303 (1989)

    Article  CAS  Google Scholar 

  28. A. Felske, W.J. Plieth, Electrochim. Acta 34, 75 (1989)

    Article  CAS  Google Scholar 

  29. Lj.D Arsov, C. Kormann, W. Plieth, J. Electrochem. Soc. 138, 2964 (1991)

    Article  CAS  Google Scholar 

  30. U. Roland, E. Henssge, L. Sümmchen, R. Slazer, Zeitschr für Physik Chem 191, 197 (1995)

    CAS  Google Scholar 

  31. J.F. McAleer, L.M. Peter, Faraday Discuss. R. Soc. Chem. 70, 67 (1980)

    Article  Google Scholar 

  32. W.F. Ho, C.P. Ju, J.H. Chern Lin, Biomaterials 20, 2115 (1999)

    Article  CAS  Google Scholar 

  33. J. Pjescic, S. Mentus, V. Komnenic, N. Blagojevic, J. Corros. Sci. Eng. 3, 7 (2000)

    Google Scholar 

  34. C.E.B. Marino, E.M. Oliveira, R.C. Rocha-Filho, S.R. Biaggio, Corros. Sci. 43, 1465 (2001)

    Article  CAS  Google Scholar 

  35. V. Zwilling, M. Aucouturier, E. Darque-Ceretti, Electrochim. Acta 45, 921 (1999)

    Article  CAS  Google Scholar 

  36. J.-E. Sundgren, P. Bodö, I. Lundström, J. Colloid Interface Sci. 110, 9 (1986)

    Article  CAS  Google Scholar 

  37. L. Muszkat, L. Feigelson, L. Bir, K.A. Muszkat, J. Photochem. Photobiol. 60, 32 (2001)

    Article  CAS  Google Scholar 

  38. E. Jansson, P. Tengvall, Colloids Interfaces B 35, 45 (2004)

    Article  CAS  Google Scholar 

  39. J. Marsh, D. Gorse, Electrochim. Acta 43, 659 (1998)

    Article  CAS  Google Scholar 

  40. R. Godley, D. Starosvetsky, I. Gotman, J. Mater. Sci.: Mater. Med. 15, 1073–1077 (2004)

    Article  CAS  Google Scholar 

  41. K. Hitzig, W.J. Juttner, W. Lorenz, J. Paatsch, J. Electochem. Soc. 133, 887 (1986)

    Article  CAS  Google Scholar 

  42. F. Mansfeld, M.W. Kendig, J. Electrochem. Soc. 135, 828 (1988)

    Article  CAS  Google Scholar 

  43. E.P.M. van Westing, G.M. Ferrari, D.H. van der Weijde, J.H.W. de Wit, Corros. Sci. 34, 937 (1993)

    Google Scholar 

  44. I.C. Lavos-Valereto, I. Costa, S. Wolynec, J. Biomed. Mater. Res. (Appl. Biomater.) 63, 664 (2002)

    Article  CAS  Google Scholar 

  45. J. Pan, D. Thierry, C. Leygraf, J. Biomed. Mater. Res. 28, 113 (1994)

    Article  CAS  Google Scholar 

  46. T. Ohtsuka, T. Otsuki, Corros. Sci. 40, 951 (1998)

    Article  CAS  Google Scholar 

  47. D.J. Blackwood, Electrochim. Acta 46, 563 (2000)

    Article  CAS  Google Scholar 

  48. R. Venugopalan, J.J. Weimer, M.A. Gorge, L.C. Lucas, Biomaterials 21, 1669 (2000)

    Article  CAS  Google Scholar 

  49. T.M. Silva, J.E. Rito, A.M.P. Simões, M.G.S. Ferreira, M. da Cunha Belo, K.G. Watkins, Electrochim. Acta 43, 203 (1998)

    Article  CAS  Google Scholar 

  50. G.C. Silva, C.S. Fuglvara, G. Tremiliosi Filho, P.T.A. Sumodjo, A.V. Benedetti, Electrochim. Acta 47, 1875 (2002)

    Article  CAS  Google Scholar 

  51. I. Sgura, B. Bozzini, Int. J. Non-Linear Mech. 40, 557 (2005)

    Article  Google Scholar 

  52. B. Bozzini, I. Sgura, Nonlinear Anal.: Real World Appl. 9, 412 (2008)

    Article  Google Scholar 

  53. B. Bozzini, G. Giovannelli, M. Boniardi, P.L. Cavallotti, Compos. Sci. Technol. 59, 1579 (1999)

    Article  CAS  Google Scholar 

  54. B. Bozzini, S. Maffi, L. D’Urzo, L. Peraldo Bicelli, Submitted to Corros. Rev.

  55. B. Bozzini, G. Giovannelli, L. D’Urzo, in Advanced technologies, research—development—application, ed. by ARS (Vienna, 2006) p. 156

  56. X.-Y. Guo, D.-P. Xu, Z.-H. Ding, W.-H. Su, Chin. Phys. Lett. 23, 1645 (2006)

    Article  CAS  Google Scholar 

  57. B. Bozzini, V. Romanello, C. Mele, Surf. Coat. Technol. 201, 6267 (2007)

    Article  CAS  Google Scholar 

  58. C.A. Borrás, R. Romagnoli, R.O. Lezna, Electrochim. Acta 45, 1717 (2000)

    Article  Google Scholar 

  59. B. Bozzini, B. Busson, G.P. De Gaudenzi, L. D’Urzo, C. Mele, A. Tedjeddine, J. Electroanal. Chem. 602, 61 (2007)

    Article  CAS  Google Scholar 

  60. B. Bozzini, S.A. Campbell, L. D’Urzo, Trans. IMF 85, 212 (2007)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. Bozzini.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bozzini, B., Carlino, P., D’Urzo, L. et al. An electrochemical impedance investigation of the behaviour of anodically oxidised titanium in human plasma and cognate fluids, relevant to dental applications. J Mater Sci: Mater Med 19, 3443–3453 (2008). https://doi.org/10.1007/s10856-008-3487-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10856-008-3487-1

Keywords

Navigation