Skip to main content

Advertisement

Log in

Fabrication of porous poly(L-lactide) (PLLA) scaffolds for tissue engineering using liquid–liquid phase separation and freeze extraction

  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

PLLA scaffolds were successfully fabricated using liquid–liquid phase separation with freeze extraction techniques. The effects of different processing conditions, such as method of cooling (direct quenching and pre-quenching), freezing temperature (−80°C and −196°C) and polymer concentration (3, 5 and 7 wt%) were investigated in relations to the scaffold morphology. SEM micrographs of scaffolds showed interconnected porous network with pore size ranging from 20 to 60 μm. The scaffolds had porosity values ranging from 80 to 90%. Changes to the interconnected network, porosity and pore size were observed when the method of cooling and polymer concentration was changed. Direct quenching to −80°C gave a more porous interconnected microstructure with uniform pore size compared to samples prepared using pre-quenching method. Larger pores were observed for samples quenched at −80°C compared to −196°C. Scaffolds prepared using direct quenching to −196°C had higher elastic modulus and compressive stress compared to those quenched to −80°C. The compressive elastic modulus ranged from 4 to 7 MPa and compressive stress at 10% strain was from 0.13 to 0.18 MPa.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. J.H. Lee et al., Biomaterials 24(16), 2773–2778 (2003)

    Article  PubMed  CAS  Google Scholar 

  2. P.X. Ma, Materials Today 7(5), 30–40 (2004)

    Article  CAS  ADS  Google Scholar 

  3. Y. Cao et al., in Biopolymer Methods in Tissue Engineering, ed. by A.P. Hollander, P.V. Hatton (Humana Press, 2004), pp. 87–111

  4. D.L. Butler, S.A. Goldstein, F. Guilak, J Biomech Eng 122(6), 570–575 (2000)

    Article  PubMed  CAS  Google Scholar 

  5. R. Thomson et al., in Biopolymers II, ed by N.A. Peppas, R.S. Langer (Springer Berlin/Heidelberg, 1995), pp. 245–274

  6. L.D. Harris, B.-S. Kim, D.J. Mooney, J Biomed Mater Res 42(3), 396–402 (1998)

    Article  PubMed  CAS  Google Scholar 

  7. A.G. Mikos et al., J Biomed Mater Res 27(2), 183–189 (1993)

    Article  PubMed  CAS  Google Scholar 

  8. H.-R. Lin et al., J Biomed Mater Res 63(3), 271–279 (2002)

    Article  PubMed  CAS  Google Scholar 

  9. Y.S. Nam, T.G. Park, J Biomed Mater Res 47(1), 8–17 (1999)

    Article  PubMed  CAS  Google Scholar 

  10. S.S. Kim, D.R. Lloyd, Polymer 33(5), 1047–1057 (1992)

    Article  CAS  Google Scholar 

  11. C. Schugens et al., Polymer 37(6), 1027–1038 (1996)

    Article  CAS  Google Scholar 

  12. S. Yang et al., Tissue Eng 7(6), 679–689 (2001)

    Article  PubMed  CAS  Google Scholar 

  13. A.G. Mikos, J.S. Temenoff, Electron J Biotechnol 3(2), 114–119 (2000)

    Google Scholar 

  14. R. Zhang, P. X. Ma in Methods of tissue engineering, ed. by A. Atala, R.P. Lanza (Academic Press, 2002), pp. 715–724

  15. F.J. Hua, T.G. Park et al., Polymer 44(6), 1911–1920 (2003)

    Article  CAS  Google Scholar 

  16. F.J. Hua, G.E. Kim et al., J Biomed Mater Res 63(2), 161–167 (2002)

    Article  PubMed  CAS  Google Scholar 

  17. C. Tu et al., Polym Advan Technol 14(8), 565–573 (2003)

    Article  CAS  Google Scholar 

  18. M.H. Ho, P. Kuo, H. Hsieh, T. Hsien, L. Hou, J. Lai, D. Wang, Biomaterials 25(1), 129–138 (2004)

    Article  PubMed  CAS  Google Scholar 

  19. Y.Q. Goh, C.P. Ooi, J Mater Sci Mater Med 19(6), 2445–2452 (2008)

    Article  PubMed  CAS  Google Scholar 

  20. A.G. Mikos et al., Polymer 35(5), 1068–1077 (1994)

    Article  CAS  Google Scholar 

  21. P.X. Ma, R. Zhang, J Biomed Mater Res 56(4), 469–477 (2001)

    Article  PubMed  CAS  Google Scholar 

  22. Y. Wan et al., Polym Advan Technol 19(2), 114–123 (2008)

    Article  CAS  Google Scholar 

  23. P.v.d. Witte et al., J Polym Sci Part B Polym Phys 34(15), 2553–2568 (1996)

    Article  Google Scholar 

  24. Y. Hu et al., J Biomed Mater Res 59(3), 563–572 (2002)

    Article  PubMed  CAS  Google Scholar 

  25. S. Li et al., Polymer Int 53(12), 2079–2085 (2004)

    Article  CAS  Google Scholar 

  26. L. Liu et al., J Biomed Mater Res 82A(3), 618–629 (2007)

    Article  CAS  Google Scholar 

  27. N. Rotter et al., J Tissue Eng Regenerative Med 1(6), 411–416 (2007)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. P. Ooi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Budyanto, L., Goh, Y.Q. & Ooi, C.P. Fabrication of porous poly(L-lactide) (PLLA) scaffolds for tissue engineering using liquid–liquid phase separation and freeze extraction. J Mater Sci: Mater Med 20, 105–111 (2009). https://doi.org/10.1007/s10856-008-3545-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10856-008-3545-8

Keywords

Navigation