Skip to main content
Log in

3D polycaprolactone scaffolds with controlled pore structure using a rapid prototyping system

  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

Designing a three-dimensional (3-D) ideal scaffold has been one of the main goals in biomaterials and tissue engineering, and various mechanical techniques have been applied to fabricate biomedical scaffolds used for soft and hard tissue regeneration. Scaffolds should be biodegradable and biocompatible, provide temporary support for cell growth to allow cell adhesion, and consist of a defined structure that can be formed into customized shapes by a computer-aided design system. This versatility in preparing scaffolds gives us the opportunity to use rapid prototyping devices to fabricate polymeric scaffolds. In this study, we fabricated polycaprolactone scaffolds with interconnecting pores using a 3-D melt plotting system and compared the plotted scaffolds to those made by salt leaching. Scanning electron microscopy, a laser scanning microscope, micro-computed tomography, and dynamic mechanical analysis were used to characterize the geometry and mechanical properties of the resulting scaffolds and morphology of attached cells. The plotted scaffolds had the obvious advantage that their mechanical properties could be easily manipulated by adjusting the scaffold geometry. In addition, the plotted scaffolds provided more opportunity for cells to expand between the strands of the scaffold compared to the salt-leached scaffold.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. D.W. Hutmacher, T. Schantz, I. Zein, K.W. Ng, S.H. Teoh, K.C. Tan, J. Biomed. Mater. Res. 55, 203 (2001). doi:10.1002/1097-4636(200105)55:2<203::AID-JBM1007>3.0.CO;2-7

    Article  PubMed  CAS  Google Scholar 

  2. T.B.F. Woodfield, J. Malda, J. de Wijn, F. Péters, J. Riesle, C.A. van Blitterswijk, Biomateriasls 25, 4149 (2004). doi:10.1016/j.biomaterials.2003.10.056

    Article  CAS  Google Scholar 

  3. E. Sachlos, J.T. Czernuszka, Eur. Cell Mater. 5, 29 (2003)

    PubMed  CAS  Google Scholar 

  4. X. Wang, Y. Yan, R. Zhang, Trends Biotechnol. 25, 505 (2007). doi:10.1016/j.tibtech.2007.08.010

    Article  PubMed  CAS  Google Scholar 

  5. A. Pfister, R. Landers, A. Laib, U. Hübner, R. Schmelzeisen, F. Mülhaupt, J. Polym. Sci. Part A 42, 624 (2004). doi:10.1002/pola.10807

    Article  CAS  Google Scholar 

  6. S.J. Hollister, Nat. Mater. 4, 519 (2005). doi:10.1038/nmat1421

    Article  ADS  Google Scholar 

  7. M.E. Hoque, D.W. Hutmacher, W. Feng, S. Li, M.-H. Huang, M. Vert et al., J. Biomater. Sci. Polym. Ed. 16, 1595 (2005). doi:10.1163/156856205774576709

    Article  PubMed  CAS  Google Scholar 

  8. H. Seitz, W. Rieder, S. Irsen, B. Leukers, C. Tille, J. Biomed. Mater. Res. Part B 74B, 782 (2005). doi:10.1002/jbm.b.30291

    Article  CAS  Google Scholar 

  9. M. Lee, J.C.Y. Dunn, B.M. Wu, Biomaterials 26, 4281 (2005). doi:10.1016/j.biomaterials.2004.10.040

    Article  PubMed  CAS  Google Scholar 

  10. W. Mironov, T. Boland, T. Trusk, G. Forgacs, R.R. Maikwald, Trends Biotechnol. 21, 157 (2003). doi:10.1016/S0167-7799(03)00033-7

    Article  PubMed  CAS  Google Scholar 

  11. J.M. Williams, A. Adewunmi, R.M. Schek, C.L. Fanangan, P.H. Krebsbach, S.E. Feinbergh et al., Biomaterials 26, 4817 (2005). doi:10.1016/j.biomaterials.2004.11.057

    Article  PubMed  CAS  Google Scholar 

  12. G. Vozzi, C. Flaim, A. Ahluwalia, S. Bhatia, Biomaterials 24, 2533 (2003). doi:10.1016/S0142-9612(03)00052-8

    Article  PubMed  CAS  Google Scholar 

  13. I. Zein, D.W. Hutmacher, K.C. Tan, S.H. Teoh, Biomaterials 23, 1169 (2002). doi:10.1016/S0142-9612(01)00232-0

    Article  PubMed  CAS  Google Scholar 

  14. R. Landers, U. Hübner, R. Schmelzeisen, R. Mülhaupt, Biomaterials 23(2203), 4437 (2002)

    Article  PubMed  CAS  Google Scholar 

  15. J.-T. Schantz, A. Brandwood, D.W. Hutmacher, H.L. Khor, K. Bittner, J. Mater. Sci. Mater. Med. 16, 807 (2005). doi:10.1007/s10856-005-3584-3

    Article  PubMed  CAS  Google Scholar 

  16. B. Partee, S.J. Hollister, S. Das, J. Manufac, Sci. Eng. 128, 531 (2006)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to GeunHyung Kim.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Park, S., Kim, G., Jeon, Y.C. et al. 3D polycaprolactone scaffolds with controlled pore structure using a rapid prototyping system. J Mater Sci: Mater Med 20, 229–234 (2009). https://doi.org/10.1007/s10856-008-3573-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10856-008-3573-4

Keywords

Navigation