Skip to main content
Log in

Study of mesoporous silica/magnetite systems in drug controlled release

  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

Ordered mesoporous materials like SBA-15 have a network of channels and pores with well-defined size in the nanoscale range. This particular silica matrix pore architecture makes them suitable for hosting a broad variety of compounds in very promising materials in a range of applications, including drug release magnetic carriers. In this work, magnetic nanoparticles embedded into mesoporous silica were prepared in two steps: first, magnetite was synthesized by oxidation–precipitation method, and next, the magnetic nanoparticles were coated with mesoporous silica by using nonionic block copolymer surfactants as structure-directing agents. The materials were characterized by X-ray diffraction (XRD), Fourier-transform infrared spectroscopy (FTIR), N2 adsorption, and scanning electron microscopy (SEM). The influence of magnetic nanoparticles on drug release kinetics was studied with cisplatin, carboplatin, and atenolol under in vitro conditions in the absence and in the presence of an external magnetic field (0.25 T) by using NdFeB permanent magnet. The constant external magnetic field did not affect drug release significantly. The low-frequency alternating magnetic field had a large influence on the cisplatin release profile.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. R. Langer, Science 249, 1527–1533 (1990). doi:10.1126/science.2218494

    Article  PubMed  ADS  CAS  Google Scholar 

  2. A.K. Dash, G.C. Cudworth, J. Pharmacol. Toxicol. Methods 40, 1 (1998). doi:10.1016/S1056-8719(98)00027-6

    Article  PubMed  CAS  Google Scholar 

  3. L.A. Harris, J.D. Goff, A.Y. Carmichael, J.S. Riffle, J.J. Harburn, Chem. Mater. 15, 1367 (2003). doi:10.1021/cm020994n

    Article  CAS  Google Scholar 

  4. M. Vallet-Regí, J.C. Doadrio, A.L. Doadrio, I. Izquierdo-Barba, J. Pérez-Pariente, Solid State Ionics 172, 435–439 (2004)

    Article  CAS  Google Scholar 

  5. P. Horcajada, A. Rámila, J. Pérez-Pariente, M. Vallet-Regí, Microporous Mesoporous Mater. 68, 105–109 (2004)

    Article  CAS  Google Scholar 

  6. I. Izquierdo-Barba, L. Ruiz-González, J.C. Doadrio, J.M. González-Calbet, M. Vallet-Regí, Solid State Sci. 7, 983–989 (2005). doi:10.1016/j.solidstatesciences.2005.04.003

    Article  CAS  ADS  Google Scholar 

  7. A. Sousa, E.M.B. Sousa, J. Non-Cryst. Solids 352, 3451 (2006). doi:10.1016/j.jnoncrysol.2006.03.080

    Article  ADS  CAS  Google Scholar 

  8. A.L. Doadrio, E.M.B. Sousa, J.C. Doadrio, J.P. Pariente, I. Izquierdo-Barba, M. Vallet-Regi, J. Control Release 97, 125 (2004). doi:10.1016/j.jconrel.2004.03.005

    Article  PubMed  CAS  Google Scholar 

  9. K.C. Souza, G. Salazar-Alvarez, J.D. Ardisson, W.A.A. Macedo, E.M.B. Sousa, Nanotechnology 19, 561 (2008)

    Article  CAS  Google Scholar 

  10. A. Sousa, K.C. Souza, E.M.B. Sousa, Acta Biomater. 4, 671 (2008)

    Article  PubMed  CAS  Google Scholar 

  11. T. Sugimoto, E. Matijevic, J. Colloid Interface Sci. 74, 227 (1979). doi:10.1016/0021-9797(80)90187-3

    Article  Google Scholar 

  12. J.-S. Choi, S.-S. Yoon, S.-H. Jang, W.-S. Ahn, Catal. Today 111, 280 (2006). doi:10.1016/j.cattod.2005.10.037

    Article  CAS  Google Scholar 

  13. D. Zhao, J. Feng, Q. Huo, N. Melosh, G.H. Fredrickson, B.F. Chmelka, G.D. Stucky, Science 279, 548 (1998). doi:10.1126/science.279.5350.548

    Article  PubMed  CAS  ADS  Google Scholar 

  14. L.C.M. Pinto, (Quantikov – Um Analisador Microestrutural para o Ambiente WindowsTM), PhD Thesis, Universidade de São Paulo- USP, Instituto de Pesquisas Energéticas e Nucleares – IPEN, 1996

  15. J.A. Ritter, A.D. Ebner, K.D. Daniel, K.L. Stewart, J. Magn. Magn. Mater. 280, 184 (2004). doi:10.1016/j.jmmm.2004.03.012

    Article  ADS  CAS  Google Scholar 

  16. T. Higuchi, J. Pharm. Sci. 50, 874 (1961). doi:10.1002/jps.2600501018

    Article  PubMed  CAS  Google Scholar 

  17. P. Costa, J.M.S. Lobo, Eur. J. Pharm. Sci. 13, 123 (2001). doi:10.1016/S0928-0987(01)00095-1

    Article  PubMed  CAS  Google Scholar 

  18. N.A. Peppas, Pharm. Acta Helv. 60, 110 (1985)

    PubMed  CAS  Google Scholar 

  19. P.L. Ritger, N.A. Peppas, J. Control. Release 5, 23 (1987). doi:10.1016/0168-3659(87)90034-4

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are grateful to CAPES, CNPq, FAPEMIG, and LNLS (Campinas––Brazil) for supporting this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. M. B. Sousa.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Souza, K.C., Ardisson, J.D. & Sousa, E.M.B. Study of mesoporous silica/magnetite systems in drug controlled release. J Mater Sci: Mater Med 20, 507–512 (2009). https://doi.org/10.1007/s10856-008-3592-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10856-008-3592-1

Keywords

Navigation