Skip to main content
Log in

High strength bioactive glass-ceramic scaffolds for bone regeneration

  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

This research work is focused on the preparation of macroporous glass-ceramic scaffolds with high mechanical strength, equivalent with cancellous bone. The scaffolds were prepared using an open-cells polyurethane sponge as a template and glass powders belonging to the system SiO2–P2O5–CaO–MgO–Na2O–K2O. The glass, named as CEL2, was synthesized by a conventional melting-quenching route, ground and sieved to obtain powders of specific size. A slurry of CEL2 powders, polyvinyl alcohol (PVA) as a binder and water was prepared in order to coat, by a process of impregnation, the polymeric template. A thermal treatment was then used to remove the sponge and to sinter the glass powders, in order to obtain a replica of the template structure. The scaffolds were characterized by means of X-ray diffraction analysis, morphological observations, density measurements, volumetric shrinkage, image analysis, capillarity tests, mechanical tests and in vitro bioactivity evaluation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. J.A. Goulet, L.E. Senunas, G.L. DeSilva, M.L. Greenfield, Clin. Orthop. Relat. Res. 339, 76–81 (1997). doi:10.1097/00003086-199706000-00011

    Article  PubMed  Google Scholar 

  2. E.M. Younger, M.W. Chapman, J. Orthop. Trauma. 3, 192–195 (1989). doi:10.1097/00005131-198909000-00002

    Article  PubMed  CAS  Google Scholar 

  3. K.A. Hing, F.W. Wilson, T. Buckland, Spine 7, 475–490 (2007). doi:10.1016/j.spinee.2006.07.017

    Article  Google Scholar 

  4. C.J. Anker, S.P. Holdridge, B. Baird, H. Coehn, T.A. Damron, Clin. Orthop. Relat. Res. 434, 251–257 (2005). doi:10.1097/01.blo.0000153991.94765.1b

    Article  PubMed  Google Scholar 

  5. B.R. Moed, S.E. Wilson-Carr, J.G. Craig, J.T. Watson, Clin. Orthop. Relat. Res. 410, 303–309 (2003). doi:10.1097/01.blo.0000063788.32430.8f

    Article  PubMed  Google Scholar 

  6. P. Hinz, E. Wolf, G. Schwesinger, E. Hartelt, A. Ekkernkamp, Orthopedics 25(Suppl 5), 597–600 (2002)

    Google Scholar 

  7. T. Yamamoto, T. Onga, T. Marui, K. Mizuno, J. Bone. Joint. Surg. Br. 82, 1117–1120 (2000). doi:10.1302/0301-620X.82B8.11194

    Article  PubMed  CAS  Google Scholar 

  8. K.E. Salyer, C.D. Hall, Plast. Reconstr. Surg. 84, 236–244 (1989). doi:10.1097/00006534-198908000-00008

    Article  PubMed  CAS  Google Scholar 

  9. G.R. Meadow, Orthopedics 25(Suppl 5), 579–584 (2002)

    Google Scholar 

  10. R. Mortera, B. Onida, S. Fiorilli, V. Cauda, C. Vitale-Brovarone, F. Baino et al., Chem. Engl. J. 137, 54–61 (2008). doi:10.1016/j.cej.2007.07.094

    Article  CAS  Google Scholar 

  11. R.Z. Legeros, S. Lin, R. Rohanizadeh, D. Mijares, J.P. Legeros, J. Mater. Sci. Mater. Med. 14, 201–209 (2003). doi:10.1023/A:1022872421333

    Article  PubMed  CAS  Google Scholar 

  12. Y. Zhang, H.H.K. Xu, S. Tagaki, L.C. Chow, J. Mater. Sci. Mater. Med. 17, 437–445 (2006). doi:10.1007/s10856-006-8471-z

    Article  PubMed  Google Scholar 

  13. J. Jones, L.L. Hench, Curr. Opin. Solid State Mater. Sci. 7, 301–307 (2003). doi:10.1016/j.cossms.2003.09.012

    Article  CAS  Google Scholar 

  14. C. Vitale-Brovarone, E. Verné, P. Appendino, J. Mater. Sci. Mater. Med. 17, 1069–1078 (2006). doi:10.1007/s10856-006-0533-8

    Article  Google Scholar 

  15. P.N. De Aza, Z.B. Luklinska, C. Santos, F. Guitian, S. De Aza, Biomat 24, 1437–1445 (2003). doi:10.1016/S0142-9612(02)00530-6

    Article  Google Scholar 

  16. D. Rokusek, C. Davitt, A. Bandyopadhyay, S. Bose, H.L. Hosick, J. Biomed. Res. 75, 588–594 (2005)

    Google Scholar 

  17. Z. Schwarts, B.D. Boyan, J. Cell. Biochem. 56, 340–347 (1994). doi:10.1002/jcb.240560310

    Article  Google Scholar 

  18. J.D. Thompson, L.L. Hench, J. Engl. Med. 212, 127–136 (1998). doi:10.1243/0954411981533908

    Article  CAS  Google Scholar 

  19. Q.Z. Chen, I.D. Thompson, A.R. Beccaccini, Biomat 27, 2414–2425 (2006). doi:10.1016/j.biomaterials.2005.11.025

    Article  CAS  Google Scholar 

  20. X. Miao, G. Lim, K.H. Loh, A.R. Boccaccini, Mater. Proc. Prop. Perf. (MP3) 3, 319–324 (2004)

    Google Scholar 

  21. L.L. Hench, J. Mater. Biomed. Res. 41, 511–518 (1998). doi:10.1002/(SICI)1097-4636(19980915)41:4<511::AID-JBM1>3.0.CO;2-F

  22. T.W. Bauer, S.T. Smith, Clin. Orthop. Relat. Res. 395, 11–22 (2002). doi:10.1097/00003086-200202000-00003

    Article  PubMed  Google Scholar 

  23. J.R. Jones, L.M. Ehrenfried, L.L. Hench, Biomat 27, 964–973 (2006). doi:10.1016/j.biomaterials.2005.07.017

    Article  CAS  Google Scholar 

  24. N.L. Porter, R.M. Pilliar, M.D. Grynpas, J. Biomed. Mater. Res. 56, 504–515 (2001). doi:10.1002/1097-4636(20010915)56:4<504::AID-JBM1122>3.0.CO;2-J

    Google Scholar 

  25. C. Vitale-Brovarone, E. Verné, L. Robiglio, P. Appendino, F. Bassi, G. Martinasso et al., Acta. Biomater. 3, 199–208 (2007). doi:10.1016/j.actbio.2006.07.012

    Article  PubMed  CAS  Google Scholar 

  26. C. Vitale-Brovarone, M. Miola, C. Balagna, E. Verné, Chem. Engl. J. 137, 129–136 (2008). doi:10.1016/j.cej.2007.07.083

    Article  CAS  Google Scholar 

  27. O. Lyckfeldt, J.M. Ferreira, J. Eur. Ceram. Soc. 18, 131–140 (1998). doi:10.1016/S0955-2219(97)00101-5

    Article  CAS  Google Scholar 

  28. C. Vitale-Brovarone, S. Di Nunzio, O. Bretcanu, E. Verné, J. Mater. Sci. Mater. Med. 15, 209–217 (2004). doi:10.1023/B:JMSM.0000015480.49061.e1

    Article  PubMed  CAS  Google Scholar 

  29. C. Vitale-Brovarone, E. Verné, L. Robiglio, G. Martinasso, R. Canuto, G. Muzio, J. Mater. Sci. Mater. Med. 19, 471–478 (2008). doi:10.1007/s10856-006-0111-0

    Article  PubMed  CAS  Google Scholar 

  30. N. Uchida, N. Ishiyama, Z. Kato, K. Uematsu, J. Coat. Technol. Res. 29, 5188–5192 (1994)

    CAS  Google Scholar 

  31. T. Kokubo, H. Takadama, Biomat 27, 2907–2915 (2006). doi:10.1016/j.biomaterials.2006.01.017

    Article  CAS  Google Scholar 

Download references

Acknowledgement

The authors wish to acknowledge the EU Network of Excellence project “Knowledge-based Multicomponent Materials for Durable and Safe Performance” (KMM-NoE, NMP3-CT-2004-502243).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Enrica Verné.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vitale-Brovarone, C., Baino, F. & Verné, E. High strength bioactive glass-ceramic scaffolds for bone regeneration. J Mater Sci: Mater Med 20, 643–653 (2009). https://doi.org/10.1007/s10856-008-3605-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10856-008-3605-0

Keywords

Navigation