Skip to main content

Advertisement

Log in

Electrospun submicron bioactive glass fibers for bone tissue scaffold

  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

Submicron bioactive glass fibers 70S30C (70 mol% SiO2, 30 mol% CaO) acting as bone tissue scaffolds were fabricated by electrospinning method. The scaffold is a hierarchical pore network that consists of interconnected fibers with macropores and mesopores. The structure, morphological characterization and mechanical properties of the submicron bioactive glass fibers were studied by XRD, EDS, FIIR, SEM, N2 gas absorption analyses and nanoindentation. The effect of the voltage on the morphology of electrospun bioactive glass fibers was investigated. It was found that decreasing the applied voltage from 19 to 7 kV can facilitate the formation of finer fibers with fewer bead defects. The hardness and Young’s modulus of submicron bioactive glass fibers were measured as 0.21 and 5.5 GPa, respectively. Comparing with other bone tissue scaffolds measured by nanoindentation, the elastic modulus of the present scaffold was relatively high and close to the bone.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. W.J. Boyle, W.S. Simonet, D.L. Lacey, Nature 423, 337 (2003). doi:10.1038/nature01658

    Article  PubMed  ADS  CAS  Google Scholar 

  2. R. Murugan, S. Ramakrishna, Compos. Sci. Technol. 65, 2385 (2005). doi:10.1016/j.compscitech.2005.07.022

    Article  CAS  Google Scholar 

  3. J.R. Jones, L.M. Ehrenfried, L.L. Hench, Biomaterials 27, 964 (2006). doi:10.1016/j.biomaterials.2005.07.017

    Article  PubMed  CAS  Google Scholar 

  4. K.J.L. Burg, S. Porter, J.F. Kellam, Biomaterials 21, 2347 (2000). doi:10.1016/S0142-9612(00)00102-2

    Article  PubMed  CAS  Google Scholar 

  5. L.L. Hench, J.M. Polak, Science 295, 1014 (2002). doi:10.1126/science.1067404

    Article  PubMed  ADS  CAS  Google Scholar 

  6. L.L. Hench, J. Mater. Sci. Mater. Med. 17, 967 (2006). doi:10.1007/s10856-006-0432-z

    Article  PubMed  CAS  Google Scholar 

  7. P. Saravanapavan, L.L. Hench, J. Biomed. Mater. Res. 54, 608 (2001). doi:10.1002/1097-4636(20010315)54:4<608::AID-JBM180>3.0.CO;2-U

    Article  PubMed  CAS  Google Scholar 

  8. J.R. Jones, O. Tsigkou, E.E. Coates, M.M. Stevens, J.M. Polak, L.L. Hench, Biomaterials 28, 1653 (2007). doi:10.1016/j.biomaterials.2006.11.022

    Article  PubMed  CAS  Google Scholar 

  9. P. Saravanapavan, J.R. Jones, R.S. Pryce, L.L. Hench, J. Biomed. Mater. Res. 66A, 110 (2003). doi:10.1002/jbm.a.10532

    Article  CAS  Google Scholar 

  10. P. Saravanapavan, J.R. Jones, S. Verrier, R. Beilby, V.J. Shirtliff, L.L. Hench, J.M. Polak, Biomed. Mater. Eng. 14, 467 (2004)

    PubMed  Google Scholar 

  11. P. Saravanapavan, L.L. Hench, J. Non-Cryst. Solids 318, 1 (2003). doi:10.1016/S0022-3093(02)01864-1

    Article  ADS  CAS  Google Scholar 

  12. P. Saravanapavan, L.L. Hench, J. Non-Cryst. Solids 318, 14 (2003). doi:10.1016/S0022-3093(02)01882-3

    Article  ADS  CAS  Google Scholar 

  13. J.R. Jones, L.L. Hench, J. Mater. Sci. 38, 3783 (2003). doi:10.1023/A:1025988301542

    Article  CAS  Google Scholar 

  14. M.M. Pereira, J.R. Jones, L.L. Hench, Adv. Appl. Ceram 104, 35 (2005). doi:10.1179/174367605225011034

    Article  CAS  Google Scholar 

  15. C.Y. Xu, R. Inai, M. Kotaki, S. Ramakrishna, Biomaterials 25, 877 (2004). doi:10.1016/S0142-9612(03)00593-3

    Article  PubMed  CAS  Google Scholar 

  16. H.-W. Kim, H.-E. Kim, J.C. Knowles, Adv. Funct. Mater 16, 1529 (2006). doi:10.1002/adfm.200500750

    Article  Google Scholar 

  17. W. Xia, D. Zhang, J. Chang, Nanotechnology 18, 135601 (2007). doi:10.1088/0957-4484/18/13/135601

    Article  ADS  Google Scholar 

  18. H.-W. Kim, H.-H. Lee, G.-S. Chun, J. Biomed. Mater. Res. 85A, 651 (2008). doi:10.1002/jbm.a.31339

    Article  CAS  Google Scholar 

  19. J. Venugopal, S. Low, A.T. Choon, T.S. Sampath Kumar, S. Ramakrishna, J. Mater. Sci. Mater. Med. 19, 2039 (2008). doi:10.1007/s10856-007-3289-x

    Article  PubMed  CAS  Google Scholar 

  20. J.-H. Song, B.-H. Yoon, H.-E. Kim, H.-W. Kim, J. Biomed. Mater. Res. 84A, 875 (2008). doi:10.1002/jbm.a.31330

    Article  CAS  Google Scholar 

  21. D. Li, Y. Xia, Adv. Mater 16, 1151 (2004). doi:10.1002/adma.200400719

    Article  CAS  Google Scholar 

  22. S. Srouji, T. Kizhner, E. Suss-Tobi, E. Livne, E. Zussman, J. Mater. Sci. Mater. Med. 19, 1249 (2008). doi:10.1007/s10856-007-3218-z

    Article  PubMed  CAS  Google Scholar 

  23. L.J. Skipper, F.E. Sowrey, D.M. Pickup, V. Fitzgerald, R. Rashid, K.O. Drake, Z. Lin, P. Saravanapavan, L.L. Hench, M.E. Smith, R.J. Newport, J. Biomed. Mater. Res. 70A, 354 (2004). doi:10.1002/jbm.a.30093

    Article  CAS  Google Scholar 

  24. K. Sombatmankhong, N. Sanchavanakit, P. Pavasant, P. Supaphol, Polymer (Guildf) 48, 1419 (2007). doi:10.1016/j.polymer.2007.01.014

    Article  CAS  Google Scholar 

  25. H. Yoshimoto, Y.M. Shin, H. Terai, J.P. Vacanti, Biomaterials 24, 2077 (2003). doi:10.1016/S0142-9612(02)00635-X

    Article  PubMed  CAS  Google Scholar 

  26. R.M. Almeida, C.G. Pantano, J. Appl. Phys 68, 4225 (1990). doi:10.1063/1.346213

    Article  ADS  CAS  Google Scholar 

  27. L.J. Skipper, F.E. Sowrey, D.M. Pickup, K.O. Drake, M.E. Smith, P. Saravanapavan, L.L. Hench, R.J. Newport, J. Mater. Chem. 15, 2369 (2005). doi:10.1039/b501496d

    Article  CAS  Google Scholar 

  28. J.M. Deitzel, J. Kleinmeyer, J.D. Harris, N.C. Beck Tan, Polymer (Guildf) 42, 261 (2001). doi:10.1016/S0032-3861(00)00250-0

    Article  CAS  Google Scholar 

  29. S.-H. Tan, R. Inai, M. Kotaki, S. Ramakrishna, Polymer (Guildf) 46, 6128 (2005). doi:10.1016/j.polymer.2005.05.068

    Article  CAS  Google Scholar 

  30. J.-Y. Rho, M.E. Roy II, T.Y. Tsui, G.M. Pharr, J. Biomed. Mater. Res. 45, 48 (1999). doi:10.1002/(SICI)1097-4636(199904)45:1<48::AID-JBM7>3.0.CO;2-5

    Article  PubMed  CAS  Google Scholar 

  31. D.M. Ebenstein, L.A. Pruitt, Nanotoday 1, 26 (2006)

    Google Scholar 

  32. A.C. Fischer-Cripps, Surf. Coat. Tech. 200, 4153 (2006). doi:10.1016/j.surfcoat.2005.03.018

    Article  CAS  Google Scholar 

  33. G.X. Ni, Y.S. Choy, W.W. Lu, A.H.W. Ngan, K.Y. Chiu, Z.Y. Li, B. Tang, K.D.K. Luk, Biomaterials 27, 1963 (2006). doi:10.1016/j.biomaterials.2005.09.044

    Article  PubMed  CAS  Google Scholar 

  34. G. Lewis, J. Xu, N. Dunne, C. Daly, J. Orr, J. Biomed. Mater. Res. Part B Appl. Biomater. 78B, 312 (2006). doi:10.1002/jbm.b.30489

    Article  CAS  Google Scholar 

Download references

Acknowledgement

The authors thank Dr. Q. Liu at Ningbo Institute of Materials Technology & Engineering for the hardness measurement.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Q. F. Fang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lu, H., Zhang, T., Wang, X.P. et al. Electrospun submicron bioactive glass fibers for bone tissue scaffold. J Mater Sci: Mater Med 20, 793–798 (2009). https://doi.org/10.1007/s10856-008-3649-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10856-008-3649-1

Keywords

Navigation