Skip to main content
Log in

Aspects of the in vitro bioactivity and antimicrobial properties of Ag+- and Zn2+-exchanged 11 Å tobermorites

  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

11 Å tobermorite, Ca5Si6O16(OH)2 · 4H2O, is a layer lattice ion exchange mineral whose potential as a carrier for Ag+ and Zn2+ ions in antimicrobial, bioactive formulations has not yet been explored. In view of this, the in vitro bioactivity of Ag+- and Zn2+-exchanged 11 Å tobermorites and their bactericidal action against S. aureus and P. aeruginosa are reported. The in vitro bioactivity of the synthetic unsubstituted tobermorite phase was confirmed by the formation of bone-like hydroxycarbonate apatite (HCA) on its surface within 48 h of contact with simulated body fluid. The substitution of labile Ag+ ions into the tobermorite lattice delayed the onset of HCA-formation to 72 h; whereas, the Zn2+-substituted phase failed to elicit an HCA-layer within 14 days. Both Ag+- and Zn2+-exchanged tobermorite phases were found to exhibit marked antimicrobial action against S. aureus and P. aeruginosa, two common pathogens in biomaterial-centred infections.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. S.A. Hamid, Z. Kristalogr. 154, 189 (1981)

    Google Scholar 

  2. S. Merlino, E. Bonaccorsi, T. Armbruster, Eur. J. Mineral. 13, 577 (2001). doi:10.1127/0935-1221/2001/0013-0577

    Article  CAS  Google Scholar 

  3. S. Komarneni, D.M. Roy, Science 22, 647 (1983). doi:10.1126/science.221.4611.647

    Article  ADS  Google Scholar 

  4. N.J. Coleman, Mater. Res. Bull. 40, 2000 (2005). doi:10.1016/j.materresbull.2005.05.006

    Article  CAS  Google Scholar 

  5. T. Kokubo, Mater. Sci. Eng. C 25, 97 (2005). doi:10.1016/j.msec.2005.01.002

    Article  CAS  Google Scholar 

  6. T. Kokubo, H. Takadama, Biomaterials 27, 2907 (2006). doi:10.1016/j.biomaterials.2006.01.017

    Article  PubMed  CAS  Google Scholar 

  7. K. Lin, J. Chang, R. Cheng, Acta Biomater. 3, 271 (2007). doi:10.1016/j.actbio.2006.11.003

    Article  PubMed  CAS  Google Scholar 

  8. M. Bellantone, N.J. Coleman, L.L. Hench, J. Biomed. Mater. Res. 51, 484 (2000). doi:10.1002/1097-4636(20000905)51:3<484::AID-JBM24>3.0.CO;2-4

    Article  PubMed  CAS  Google Scholar 

  9. M. Bellantone, N.J. Coleman, L.L. Hench, Key Eng. Mater. 192–195, 597 (2001)

    Article  Google Scholar 

  10. W. Chen, Y. Liu, H.S. Courtney, M. Bettenga, C.M. Agrawal, J.D. Bumgardner, J.L. Ong, Biomaterials 27, 5512 (2006). doi:10.1016/j.biomaterials.2006.07.003

    Article  PubMed  CAS  Google Scholar 

  11. I. Ahmed, D. Ready, M. Wilson, J. Knowles, J. Biomed. Mater. Res. A 79, 618 (2006). doi:10.1002/jbm.a.30808

    PubMed  CAS  Google Scholar 

  12. A.B.G. Lansdown, Curr. Probl. Dermatol. 33, 17 (2006). doi:10.1159/000093928

    Article  PubMed  CAS  Google Scholar 

  13. X. Chen, H.J. Schluesener, Toxicol. Lett. 176, 1 (2008). doi:10.1016/j.toxlet.2007.10.004

    Article  PubMed  CAS  Google Scholar 

  14. K.R. Bright, C.P. Gerba, P.A. Rusin, J. Hosp. Infect. 52, 307 (2002). doi:10.1053/jhin.2002.1317

    Article  PubMed  CAS  Google Scholar 

  15. M.C. Bonferoni, G. Cerri, M. de’ Gennaro, C. Juliano, C. Caramella, Appl. Clay Sci. 36, 95 (2007). doi:10.1016/j.clay.2006.04.014

    Article  CAS  Google Scholar 

  16. N.J. Coleman, D.S. Brassington, Mater. Res. Bull. 38, 485 (2003). doi:10.1016/S0025-5408(02)01056-5

    Article  CAS  Google Scholar 

  17. G.L. Kalousek, J. Am. Ceram. Soc. 40, 74 (1957). doi:10.1111/j.1151-2916.1957.tb12579.x

    Article  CAS  Google Scholar 

  18. S. Shaw, C.M.B. Henderson, B.U. Komanschek, Chem. Geol. 167, 141 (2000). doi:10.1016/S0009-2541(99)00206-5

    Article  CAS  Google Scholar 

  19. N.J. Coleman, D.S. Brassington, A. Raza, A.P. Mendham, Waste Manag. 26, 260 (2006). doi:10.1016/j.wasman.2005.01.019

    Article  PubMed  CAS  Google Scholar 

  20. R.J. Kirkpatrick, J.L. Yarger, P.F. McMillan, P. Yu, X. Cong, Adv. Cement Base. Mater. 5, 93 (1997). doi:10.1016/S1065-7355(97)00001-1

    Article  CAS  Google Scholar 

  21. N.Y. Mostafa, A.A. Shaltout, H. Omarb, S.A. Abo-El-Enein, J. Alloy. Compd. doi:10.1016/j.jallcom.2007.11.130

  22. C. Ohtsuki, T. Kokubo, T. Yamamuro, J. Non-Cryst. Solid 143, 84 (1992). doi:10.1016/S0022-3093(05)80556-3

    Article  ADS  CAS  Google Scholar 

  23. N. Patel, S.M. Best, W. Bonfield, I.R. Gibson, K.A. Hing, E. Damien, P.A. Revell, J. Mater. Sci. Mater. Med. 13, 1199 (2002). doi:10.1023/A:1021114710076

    Article  PubMed  CAS  Google Scholar 

  24. I.D. Xynos, A.J. Edgar, L.D.K. Buttery, L.L. Hench, J.M. Polak, J. Biomed. Mater. Res. 55, 151 (2001). doi:10.1002/1097-4636(200105)55:2<151::AID-JBM1001>3.0.CO;2-D

    Article  PubMed  CAS  Google Scholar 

  25. M. Miyake, S. Komarneni, R. Roy, Mater. Res. Bull. 24, 311 (1989). doi:10.1016/0025-5408(89)90217-1

    Article  CAS  Google Scholar 

  26. S. Komarneni, R. Roy, D.M. Roy, Cement Concr. Res. 16, 47 (1986). doi:10.1016/0008-8846(86)90067-0

    Article  CAS  Google Scholar 

  27. N. Kanzaki, K. Onuma, G. Treboux, S. Tsutsumi, A. Ito, J. Phys. Chem. B 104, 4189 (2000). doi:10.1021/jp9939726

    Article  CAS  Google Scholar 

  28. N. Kanzaki, K. Onuma, G. Treboux, S. Tsutsumi, A. Ito, J. Phys. Chem. B 105, 1991 (2000). doi:10.1021/jp003295b

    Article  CAS  Google Scholar 

  29. A. Ito, H. Kawamura, M. Otsuka, M. Ikeuchi, H. Ohgushi, K. Ishikawa, K. Onuma, N. Kanzaki, Y. Sogo, N. Ichinose, Mater. Sci. Eng. C 22, 21 (2002). doi:10.1016/S0928-4931(02)00108-X

    Article  Google Scholar 

  30. A. Ito, M. Otsuka, H. Kawamura, M. Ikeuchi, H. Ohgushi, Y. Sogo, N. Ichinose, Curr. Appl. Phys. 5, 402 (2005). doi:10.1016/j.cap.2004.10.006

    Article  ADS  Google Scholar 

  31. V. Aina, A. Perardi, L. Bergandi, G. Malavasi, L. Menabue, C. Morterra, D. Ghigo, Chem. Biol. Interact. 167, 207 (2007). doi:10.1016/j.cbi.2007.03.002

    Article  PubMed  CAS  Google Scholar 

  32. A.G. Gristina, Science 237, 1588 (1987). doi:10.1126/science.3629258

    Article  PubMed  ADS  CAS  Google Scholar 

  33. J.M. Schierholz, J. Beuth, J. Hosp. Infect. 49, 87 (2001). doi:10.1053/jhin.2001.1052

    Article  PubMed  CAS  Google Scholar 

  34. T. Haile, G. Nakhla, E. Allouche, Corros. Sci. 50, 713 (2008). doi:10.1016/j.corsci.2007.08.012

    Article  CAS  Google Scholar 

  35. S. Quintavalla, L. Vicini, Meat Sci. 62, 373 (2002). doi:10.1016/S0309-1740(02)00121-3

    Article  CAS  Google Scholar 

  36. H. Huang, Y. Yang, Compos. Sci. Technol. doi:10.1016/j.compscitech.2007.10.003

  37. A. Top, S. Ülkü, Appl. Clay Sci. 27, 13 (2004). doi:10.1016/j.clay.2003.12.002

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The author acknowledges, with gratitude, financial support for this research from the Royal Society of Chemistry and from The Royal Society.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nichola J. Coleman.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Coleman, N.J. Aspects of the in vitro bioactivity and antimicrobial properties of Ag+- and Zn2+-exchanged 11 Å tobermorites. J Mater Sci: Mater Med 20, 1347–1355 (2009). https://doi.org/10.1007/s10856-009-3698-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10856-009-3698-0

Keywords

Navigation