Skip to main content

Advertisement

Log in

Microporous biodegradable polyurethane membranes for tissue engineering

  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

Microporous membranes with controlled pore size and structure were produced from biodegradable polyurethane based on aliphatic diisocyanate, poly(ε-caprolactone) diol and isosorbide chain extender using the modified phase-inversion technique. The following parameters affecting the process of membrane formation were investigated: the type of solvent, solvent–nonsolvent ratio, polymer concentration in solution, polymer solidification time, and the thickness of the polymer solution layer cast on a substrate. The experimental systems evaluated were polymer–N,N-dimethylformamide–water, polymer–N,N-dimethylacetamide–water and polymer–dimethylsulfoxide–water. From all three systems evaluated the best results were obtained for the system polymer–N,N-dimethylformamide–water. The optimal conditions for the preparation of microporous polyurethane membranes were: polymer concentration in solution 5% (w/v), the amount of nonsolvent 10% (v/v), the cast temperature 23°C, and polymer solidification time in the range of 24–48 h depending on the thickness of the cast polymer solution layer. Membranes obtained under these conditions had interconnected pores, well defined pore size and structure, good water permeability and satisfactory mechanical properties to allow for suturing. Potential applications of these membranes are skin wound cover and, in combination with autogenous chondrocytes, as an “artificial periosteum” in the treatment of articular cartilage defects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Gogolewski S, Pennings AJ, Lommen E, Wildevuur CRH, Nieuwenhuis P. Growth of a neo-artery induced by a biodegradable polymeric vascular prosthesis. Makromol Chem Rapid Commun. 1983;4(4):213–9.

    Article  CAS  Google Scholar 

  2. Gogolewski S, Pennings AJ. An artificial skin based on biodegradable mixtures of polylactides and polyurethanes for full thickness wound covering. Makromol Chem Rapid Commun. 1983;4(10):675–80.

    Article  CAS  Google Scholar 

  3. Lipatova TE, Pkhakadze GA, Snegirev AI, Vorona VV, Shilov VV. Supermolecular organization of some polyurethanes containing sugar derivatives in the main chain. J Biomed Mater Res. 1984;18(2):129–36.

    Article  CAS  Google Scholar 

  4. Gogolewski S, Galletti G. Degradable, microporous vascular prosthesis from segmented polyurethane. Colloid Polym Sci. 1986;264(10):854–8.

    Article  CAS  Google Scholar 

  5. Gogolewski S, Galletti G, Ussia G. Polyurethane vascular prosthesis in pigs. Colloid Polym Sci. 1987;265(9):774–8.

    Article  CAS  Google Scholar 

  6. Gogolewski S, Walpoth B, Rheiner P. Polyurethane microporous membranes as pericardial substitutes. Colloid Polymer Sci. 1987;265(11):971–7.

    Article  CAS  Google Scholar 

  7. Gogolewski S. Selected topics in biomedical polyurethanes: a review. Colloid Polym Sci. 1998;267(9):757–85.

    Article  Google Scholar 

  8. Walpoth BH, Rheiner P, Cox JN, Faidutti B, Megevand R, Gogolewski S. Implantations chroniques de membranes et prothèses en polyurethanes. Helv Chir Acta. 1988;55(1–2):157–62.

    Google Scholar 

  9. Farsø Nielsen F, Karring T, Gogolewski S. Healing of radial bone defects in rabbits using biodegradable membranes. J Dent Res. 1990;69:168–9.

    Google Scholar 

  10. Kostopoulos L, Karring T. Guided bone regeneration in mandibular defects in rats using a bioresorbable polymer. Clin Oral Implants Res. 1994;5(2):66–74.

    Article  PubMed  CAS  Google Scholar 

  11. Warrer K, Karring T, Nyman S, Gogolewski S. Guided tissue regeneration using biodegradable membranes of polylactic acid or polyurethane. J Clin Periodontol. 1992;19:633–40.

    Article  PubMed  CAS  Google Scholar 

  12. Farsø Nielsen F, Karring T, Gogolewski S. Biodegradable guide for bone regeneration Polyurethane membranes tested in rabbit radius defects. Acta Orthop Scand. 1992;63(1):66–9.

    Article  PubMed  Google Scholar 

  13. Atala A, Lanza RP, editors. Methods of tissue engineering. San Diego: Academic Press; 2001.

    Google Scholar 

  14. Gorna K, Gogolewski S. In vitro degradation of novel medical biodegradable aliphatic polyurethanes based on ε-caprolactone and Pluronics® with various hydrophilicities. Polym Degrad Stabil. 2002;75(1):113–22.

    Article  CAS  Google Scholar 

  15. Gorna K, Gogolewski S. Porous biodegradable polyurethane scaffolds for tissue repair and regeneration. J Biomed Mater Res. 2006;79A(1):128–38.

    Article  CAS  Google Scholar 

  16. Lee CR, Grad S, Gorna K, Gogolewski S, Goessl A, Alini M. Fibrin–polyurethane composites for articular cartilage tissue ngineering: A preliminary analysis. Tissue Eng. 2005;11(9–10):1562–73.

    Article  PubMed  CAS  Google Scholar 

  17. Chia SL, Gorna K, Gogolewski S, Alini M. Potential of elastomeric membranes from biodegradable polyurethanes as periosteal flap substitute: A preliminary in vitro evaluation. Tissue Eng. 2006;12(7):1945–53.

    Article  PubMed  CAS  Google Scholar 

  18. Chroscicka A, Tsui YK, Alini M, Gogolewski S. Differentiation of human mesenchymal stem cells on biodegradable polyurethane membranes for tissue engineering. In: Transactions of the 2006 annual meeting of the society for biomaterials, Pittsburgh, USA, p. 571, 2006, April 26–29.

  19. Hill CM, An YH, Kang QK, Hartsock LA, Gogolewski S, Gorna K. Osteogenesis of osteoblast seeded polyurethane-hydroxyapatite scaffolds in nude mice. Macromol Symp. 2007;253:94–7.

    Article  CAS  Google Scholar 

  20. Schlickewei C, Verrier S, Lippross S, Pearce S, Alini M, Gogolewski S. Interaction of sheep bone marrow stromal cells with biodegradable polyurethane bone substitutes. Macromol Symp. 2007;253:162–71.

    Article  CAS  Google Scholar 

  21. Gogolewski S. Biomedical polymer material for tissue repair and engineering. WO2008017170-A1; 2008.

  22. Walinska K, Iwan A, Gorna K, Gogolewski S. The use of long-chain plant polyprenols as a means to modify biological properties of new biodegradable polyurethane scaffolds for tissue engineering. A pilot study. J Mater Sci: Mater Med. 2008;19:129–35.

    Article  CAS  Google Scholar 

  23. Gogolewski S, Gorna K, Turner AS. Regeneration of bicortical defects in the iliac crest of estrogen-deficient sheep, using new biodegradable polyurethane bone graft substitutes. J Biomed Mater Res. 2006;77A(4):802–10.

    Article  CAS  Google Scholar 

  24. Gogolewski S, Gorna K. Biodegradable polyurethane cancellous bone graft substitutes in the treatment of iliac crest defects. J Biomed Mater Res. 2007;80A(1):94–101.

    Article  CAS  Google Scholar 

  25. Guan JJ, Fujimoto KL, Sacks MS, Wagner WR. Preparation and characterization of highly porous, biodegradable polyurethane scaffolds for soft tissue applications. Biomaterials. 2005;26(18):3961–71.

    Article  PubMed  CAS  Google Scholar 

  26. dal Prà P, Petrini A, Charini S, Bozzini S, Farè S, Armato U. Silk fibroin-coated three-dimensional polyurethane scaffolds for tissue engineering: interactions with normal human fibroblasts. Tissue Eng. 2003;9(6):1113–21.

    Article  CAS  Google Scholar 

  27. Siepe M, Giraud MN, Liljensten E, Nydegger U, Menasche P, Carrel T, et al. Construction of skeletal myoblast-based polyurethane scaffolds for myocardial repair. Artif Organs. 2007;31(6):425–33.

    Article  PubMed  CAS  Google Scholar 

  28. Hafeman AE, Li B, Yoshii T, Zienkiewicz K, Davidson JM, Guelcher SA. Injectable biodegradable polyurethane scaffolds with release of platelet-derived growth factor for tissue repair and regeneration. Pharmaceutical Res. 2008;25(10):2387–99.

    Article  CAS  Google Scholar 

  29. Ramarattan NN, Heikants RGJC, van Tienen TG, Schouten AJ, Veth RPH, Buma P. Assessment of tissue ingrowth rates in polyurethane scaffolds for tissue engineering. Tissue Eng. 2005;11(7–8):1212–23.

    Article  Google Scholar 

  30. Zhu YB, Gao CY, Guan JJ, Shen JC. Engineering porous polyurethane scaffolds by photografting polymerization of methacrylic acid for improved endothelial cell compatibility. J Biomed Mater Res. 2003;67A(4):1367–73.

    Article  CAS  Google Scholar 

  31. Zhang JY, Doll BA, Beckman EJ, Hollinger JO. A biodegradable polyurethane-ascorbic acid scaffold for bone tissue engineering. J Biomed Mater Res. 2003;67A(2):389–400.

    Article  CAS  Google Scholar 

  32. Guelcher SA, Patel V, Gallagher KM, Connolly S, Didier JE, Doctor JS, et al. Synthesis and in vitro biocompatibility of injectable polyurethane foam scaffolds. Tissue Eng. 2006;12(5):1247–59.

    Article  PubMed  CAS  Google Scholar 

  33. Borkenhagen M, Stoll RC, Neuenschwander P, Suter UE P, Aebischer P. In vivo performance of a new biodegradable polyester urethane system used as a nerve guidance channel. Biomaterials. 1998;19(23):2155–65.

    Article  PubMed  CAS  Google Scholar 

  34. Van Tienen TG, Heikants RGJC, Buma AP, De Groot JH, Pennings AJ, Veth RPH. Tissue ingrowth and degradation of two biodegradable porous polymers with different porosities and pore sizes. Biomaterials. 2002;23(8):1731–8.

    Article  PubMed  Google Scholar 

  35. McDevitt TC, Woodhouse KA, Hauschka SD, Murry CE, Stayton PS. Spatially organized layers of cardiomyocytes on biodegradable polyurethane films for myocardial repair. J Biomed Mater Res. 2003;66A(3):586–95.

    Article  CAS  Google Scholar 

  36. Zhu YB, Gao CY, He T, Shen JC. Endothelium regeneration on luminal surface of polyurethane vascular scaffold modified with diamine and covalently grafted with gelatin. Biomaterials. 2004;25(3):423–30.

    Article  PubMed  CAS  Google Scholar 

  37. Brittberg M, Lindahl A, Nilsson A, Ohlsson C, Isaksson O, Peterson L. Treatment of deep cartilage defects in the knee with autologous chondrocyte transplantation. N Engl J Med. 1994;331(14):889–95.

    Article  PubMed  CAS  Google Scholar 

  38. Peterson L, Minas T, Brittberg M, Lindahl A. Treatment of osteochondritis dissecans of the knee with autologous chondrocyte transplantation. J Bone Joint Surg Am. 2003;85-A Suppl 2:17–24.

    PubMed  Google Scholar 

  39. Klempner D, Frisch KC. The handbook of polymeric foams and foam technology. Munich, Germany: Hauser; 1991.

    Google Scholar 

  40. Mulder MHV. Basic principles of membrane technology. Dordrecht, Holland: Kluwer; 1991.

    Google Scholar 

  41. Kesting RE, Fritzsche AK. Polymeric gas separation membranes. New York: Wiley; 1993.

    Google Scholar 

  42. Strathmann H. Production of microporous media by phase inversion processes. In: Lloyd DR, editor. Materials science of synthetic membranes. Washington, DC: American Chemical Society; 1985. p. 165–95.

    Google Scholar 

  43. Strathmann H. Synthetic membranes and their preparation. In: Porter MC, editor. Handbook of industrial membrane technology. Park Ridge, NJ: Noyes; 1990. p. 1–26.

    Google Scholar 

  44. Laxminarayan A, Caneba GT. Analysis of polymer membrane formation through spinodal decomposition. II: Effect of Flory-Huggins enthalpic and entropic contributions. Polym Eng Sci. 1957;31(22):1597–603.

    Article  Google Scholar 

  45. Van de Witte P, Dijkstra PJ, Van den Berg JWA, Feijen J. Phase separation processes in polymer solutions in relation to membrane formation. J Membr Sci. 1996;117(1–2):1–31.

    Google Scholar 

  46. Koenhen DM, Mulder MHV, Smolders CA. Phase separation phenomena during the formation of asymmetric membranes. J Appl Polym Sci. 1997;21(1):199–215.

    Article  Google Scholar 

  47. Mikos AG, Temenoff JS. Formation of highly porous biodegradable scaffolds for tissue engineering. Electronic J Biotechnol. 2000;3(2):114–9.

    Google Scholar 

  48. Wright Medical Technology Brochure: SK 103–303; Rev. 09.04: 2004.

  49. Farsø-Nielsen F, Karring T, Gogolewski S. Healing of radial bone defects in rabbits using biodegradable polyurethane membranes. In: Proceedings of the IADR/AADR conference, Cincinnati, USA, p. 16, 1990, Sept 3–5.

  50. Gogolewski S, Rahn B, Wieling R. Bone regeneration in critical-size segmental defects in the tibiae using bioresorbable polymeric bone substitute. Proceedings of the 17th annual meeting of the Orthopaedic Trauma Association, San Diego, USA, p. 218–219, 2001, Oct 18–20.

Download references

Acknowledgement

One of the authors (Yuen Kee Tsui) thanks Ms. Katarzyna Gorna, PhD, for her help with polyurethane synthesis and DSC measurements.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sylwester Gogolewski.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tsui, Y.K., Gogolewski, S. Microporous biodegradable polyurethane membranes for tissue engineering. J Mater Sci: Mater Med 20, 1729–1741 (2009). https://doi.org/10.1007/s10856-009-3722-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10856-009-3722-4

Keywords

Navigation