Skip to main content
Log in

Segmented biopolyurethanes for medical applications

  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

Polyurethanes are one of the most popular groups of biomaterials applied for medical devices. Their segmented block copolymeric character endows them a wide range of versatility in terms of tailoring their physical properties, blood and tissue compatibility. Polyester- and polyether-urethanes have been modified with hydroxypropyl cellulose aiming the change of their surface and bulk characteristics to confer them biomaterial qualities. In this respect, dynamic contact angle measurements, dynamic mechanical analyses accompanied by mechanical testing have been done. Platelet adhesion test has been carried out in vitro and the use of hydroxypropyl cellulose in the polyurethane matrix reduces the platelet adhesion and therefore recommends them as candidates for biocompatible materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Napper DH. Steric Stabilization of Colloidal Dispersions. New York: Academic Press; 1983.

    Google Scholar 

  2. Vermette P, Griesser HJ. Biomedical Applications of Polyurethanes, Tissue Enginering Intelligence Unit. Texas, USA: Landes Bioscience; 2001.

    Google Scholar 

  3. Gast A, Leibler L. Interactions of sterically stabilized particles suspended in a polymer solution. Macromolecules. 1986;19:686–91.

    Article  ADS  CAS  Google Scholar 

  4. Adhicari R, Gunatillake PA. Biodegradable synthetic polymers for tissue engineering. Eur Cells Mater. 2003;5:1–16.

    Google Scholar 

  5. Zdrahala IJ, Zdrahala RJ. Biomedical applications of polyurethanes: a review of past promises, present realities and a vibrant future. J Biomater Appl. 1999;14:67–90.

    PubMed  CAS  Google Scholar 

  6. Lelah MD, Cooper SL. Polyurethanes in Medicine. Boca Raton, FL: CR Press; 1999.

    Google Scholar 

  7. Plank H, Syre I, Dauner M, Egberg G, editors. Polyurethane in Biomedical Engineering: II. Progress in Biomedical engineering, 3. Amsterdam: Elsevier Science; 1987.

    Google Scholar 

  8. Cooper S, Lamba NMK, Woodhouse KA. Polyurethanes in Biomedical Applications. New York: CRC Press; 1997.

    Google Scholar 

  9. Yoon S-S, Kim J-H, Kim S-C. Synthesis of biodegradable PU/PEGDA IPNs having micro-separated morphology for enhanced blood compatibility. Polym Bull. 2005;53:339–47.

    Article  CAS  Google Scholar 

  10. Hsu S, Kao Y-C. Biocompatibility of poly(carbonate urethane)s with various degrees of nanophase separation. Macromol Biosci. 2005;5:246–53.

    Article  PubMed  CAS  Google Scholar 

  11. Wang L-F, Wei Y-H. Effect of soft segment length on properties of fluorinated polyurethanes. Colloids Surf B: Biointerfaces. 2005;41:249–55.

    Article  CAS  Google Scholar 

  12. Yoo H-J, Kim H-D. Characteristics of crosslinked blends of Pellethene and multiblock polyurethanes containing phospholipid. Biomaterials. 2005;26:2877–86.

    Article  PubMed  CAS  Google Scholar 

  13. Hanada T, Li Y-J, Nakaya T. Synthesis and hemocompatibilities of cellulose-containing segmented polyurethanes. Macromol Chem Phys. 2001;202:97–104.

    Article  CAS  Google Scholar 

  14. Lelah MD, Lambrecht LK, Young BR, Cooper SL. Physicochemical characterization and in vivo blood tolerability of cast and extruded biomer. J Biomed Mater Res. 1983;17:1–22.

    Article  PubMed  CAS  Google Scholar 

  15. Merril EW, Sa da Costa V, Sulzman EV, Brier-Russell D, Kirchner L, Waugh DF, et al. In: Cooper SL, Peppas NA, editors. Biomaterials: interfacial phenomena and applications. ACS Adv Chem Serv, vol. 199. 1982. p. 95–121.

  16. Abraham GA, de Queiroz AAA, San Roman J. Immobilization of a nonsteroidal antiimflammatory drug onto commercial segmented polyurethane surface to improve haemocompatibility properties. Biomaterials. 2002;23:1625–38.

    Article  PubMed  CAS  Google Scholar 

  17. Nakaya YJ, Zhang Z, Kodama M. Blood compatible phospholipid-containing polyurethane: synthesis, characterization and blood evaluation. J Biomater Appl. 1997;12(2):167–91.

    PubMed  Google Scholar 

  18. Macocinschi D, Filip D, Vlad S. New polyurethane materials from renewable resources: synthesis and characterization. e-Polymers, no. 062, 1–12 (2008). http://www.e-polymers.org.

  19. Macocinschi D, Filip D, Butnaru M, Dimitriu CD. Surface characterization of biopolyurethanes based on cellulose derivatives. J Mater Sci: Mater Med. 2008;. doi:10.1007/s10856-008-3626-8.

    Google Scholar 

  20. Sirear AK. Elastomers. In: Turi EA, editor. Thermal characterization of polymeric materials, 2nd ed., vol. 1. USA: Academic Press; 1997. p. 970–1025.

  21. Park KD, Okano T, Nojiri C, Kim SW. Heparin immobilization onto segmented polyurethaneurea surfaces-effect of hydrophilic spacers. J Biomed Mater Res. 1998;22:977–92.

    Article  Google Scholar 

  22. Heijkants RGJC, van Calck RV, van Tienen TG, de Groot JH, Buma P, Pennings AJ, et al. Uncatalyzed synthesis, thermal and mechanical properties of polyurethanes based on poly(epsilon-caprolactone) and 1,4-butane diisocyanate with uniform hard segment. Biomaterials. 2005;26:4219–28.

    Article  PubMed  CAS  Google Scholar 

  23. Lligadas G, Ronda JC, Galia M, Cadiz V. Poly(ether urethane) networks from renewable resources as candidate biomaterials: synthesis and characterization. Biomacromolecules. 2007;8(2):686–92.

    Article  PubMed  CAS  Google Scholar 

  24. Mondal S, Hu JL. Structural characterization and mass transfer properties of polyurethane block copolymer: influence of mixed soft segment block and crystal melting temperature. Polym Int. 2006;55:1013–20.

    Article  CAS  Google Scholar 

  25. Gao S, Zhang L. Molecular weight effects on properties of polyurethane/nitrokonjac glucomannan semiinterpenetrating polymer networks. Macromolecules. 2001;34:2202–7.

    Article  ADS  CAS  Google Scholar 

  26. Huang J, Zhang L. Effect of NCO/OH molar ratio on structure and properties of graft-interpenetrating polymer networks from polyurethane and nitrolignin. Polymer. 2002;43:2287–94.

    Article  CAS  MathSciNet  Google Scholar 

  27. Raschip I.E, Vasile C, Macocinschi D. Compatibility and biocompatibility study of new HPC/PU blends, Polym Int. 2008. doi 10.1002/pi.2468.

  28. Kajiwara K, Ribeiro CAM. Dilute solution properties of randomly branched polymer systems. I. The particle scattering factor. Macromolecules. 1974;7:121–8.

    Article  ADS  CAS  Google Scholar 

  29. Spathis GD. Polyurethane elastomers studied by the Mooney Rivlin equation for rubbers. J Appl Polym Sci. 1991;43:613–20.

    Article  CAS  Google Scholar 

  30. Sekkar V, Bhagawan SS, Prabhakaran N, Rama Rao M, Ninan KN. Polyurethanes based on hydroxyl terminated polybutadiene: modeling of network parameters and correlation with mechanical properties. Polymer. 2000;41:6773–86.

    Article  CAS  Google Scholar 

  31. Lupu M, Macocinschi D, Ioanid G, Butnaru M, Ioan S. Surface tension of poly(ester urethane)s and poly(ether urethane)s. Polym Int. 2007;56:389–98.

    Article  CAS  Google Scholar 

  32. Yoo H-J, Kim H-D. Properties of crosslinked blends of pellethene and multiblock polyurethane containing poly(ethylene oxide) for biomaterials. J Appl Polym Sci. 2004;91:2348–57.

    Article  CAS  Google Scholar 

  33. Wang YX, Robertson JL, Spillman WB Jr, Claus RO. Effects of chemical structure and the surface properties of polymeric biomaterials on their biocompatibility. Pharmaceut Res. 2004;21:1362–73.

    Article  CAS  Google Scholar 

  34. Bajpai AK. Blood protein adsorption onto a polymeric biomaterial of polyethylene glycol and poly[(2-hydroxyethyl methacrylate)-co-acrylonitrile] and evaluation of in vitro blood compatibility. Polym Int. 2005;54:304–15.

    Article  CAS  Google Scholar 

  35. Korematsu A, Tomita T, Kuriyama S, Hanada T, Sakamoto S, Nakaya T. Synthesis and blood compatibilities of novel segmented polyurethanes grafted phospholipids analogous vinyl monomers and polyfunctional monomers. Acta Polym. 1999;50:363–72.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful for the financial support, to Ministry of Education and Research—Exploratory Research Projects, Code: PN-II-ID-PCE-988/2008.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Doina Macocinschi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Macocinschi, D., Filip, D., Vlad, S. et al. Segmented biopolyurethanes for medical applications. J Mater Sci: Mater Med 20, 1659–1668 (2009). https://doi.org/10.1007/s10856-009-3731-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10856-009-3731-3

Keywords

Navigation