Skip to main content
Log in

Porous polymer/hydroxyapatite scaffolds: characterization and biocompatibility investigations

  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

Poly-lactic-glycolic acid (PLGA) has been widely used as a scaffold material for bone tissue engineering applications. 3D sponge-like porous scaffolds have previously been generated through a solvent casting and salt leaching technique. In this study, polymer–ceramic composite scaffolds were created by immersing PLGA scaffolds in simulated body fluid, leading to the formation of a hydroxyapatite (HAP) coating. The presence of a HAP layer was confirmed using scanning electron microscopy, energy dispersive X-ray spectroscopy and Fourier transform infrared spectroscopy in attenuated total reflection mode. HAP-coated PLGA scaffolds were tested for their biocompatibility in vitro using human osteoblast cell cultures. Biocompatibility was assessed by standard tests for cell proliferation (MTT, WST), as well as fluorescence microscopy after standard cell vitality staining procedures. It was shown that PLGA–HAP composites support osteoblast growth and vitality, paving the way for applications as bone tissue engineering scaffolds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Pamula E, Blazewicz M, Czajkowska B, Dobrzynski P, Bero M, Kasperczyk J. Elaboration and characterization of biode- gradable scaffolds from poly(L. -lactidcoglycolide) synthesized with low-toxic zirconium acetylacetonate. Ann Transpl. 2004;9(IA (Suppl.)):64–7.

    Google Scholar 

  2. Pamula E, Menaszek E. In vitro and in vivo degradation of poly(L: -lactide-co-glycolide) films and scaffolds. J Mater Sci Mater Med. 2008;19:2063–70. doi:10.1007/s10856-007-3292-2.

    Article  PubMed  CAS  Google Scholar 

  3. Pamula E, Bacakova L, Filova E, Buczynska J, Dobrzynski P, Noskova L, et al. The influence of pore size on colonization of poly(L-lactide-glycolide) scaffolds with human osteoblast-like MG 63 cells in vitro. J Mater Sci Mater Med. 2008;19:425–35.

    Article  PubMed  CAS  Google Scholar 

  4. Tsunoda M. Degradation of poly (DL-lactic acid-co-glycolic acid) containing calcium carbonate and hydroxyapatite fillers-effect of size and shape of the fillers. Dent Mater J. 2003;22:371–82.

    PubMed  CAS  Google Scholar 

  5. Kim SS, Park MS, Gwak SJ, Choi CY, Kim BS. Accelerated bonelike apatite growth on porous polymer/ceramic composite scaffolds in vitro. Tissue Eng. 2006;12:2997–3006. doi:10.1089/ten.2006.12.2997.

    Article  PubMed  CAS  Google Scholar 

  6. Kim SS, Sun Park M, Jeon O, Yong Choi C, Kim BS. Poly(lactide-co-glycolide)/hydroxyapatite composite scaffolds for bone tissue engineering. Biomaterials. 2006;27:1399–409. doi:10.1016/j.biomaterials.2005.08.016.

    Article  PubMed  CAS  Google Scholar 

  7. Nie H, Soh BW, Fu YC, Wang CH. Three-dimensional fibrous PLGA/HAp composite scaffold for BMP-2 delivery. Biotechnol Bioeng. 2008;99:223–34. doi:10.1002/bit.21517.

    Article  PubMed  CAS  Google Scholar 

  8. Kim SS, Kim BS. Comparison of osteogenic potential between apatite-coated poly(lactide-co-glycolide)/hydroxyapatite particulates and bio-oss. Dent Mater J. 2008;27:368–75. doi:10.4012/dmj.27.368.

    Article  PubMed  CAS  Google Scholar 

  9. Kim SS, Ahn KM, Park MS, Lee JH, Choi CY, Kim BS. A poly(lactide-co-glycolide)/hydroxyapatite composite scaffold with enhanced osteoconductivity. J Biomed Mater Res. 2007;80A:206–15. doi:10.1002/jbm.a.30836.

    Article  CAS  Google Scholar 

  10. Chou YF, Dunn JC, Wu BM. In vitro response of MC3T3-E1 preosteoblasts within three-dimensional apatite-coated PLGA scaffolds. J Biomed Mater Res. 2005;75B:81–90. doi:10.1002/jbm.b.30261.

    Article  CAS  Google Scholar 

  11. Leonova EV, Pennington KE, Krebsbach PH, Kohn DH. Substrate mineralization stimulates focal adhesion contact redistribution and cell motility of bone marrow stromal cells. J Biomed Mater Res. 2006;79A:263–70. doi:10.1002/jbm.a.30786.

    Article  CAS  Google Scholar 

  12. Dobrzynski P, Kasperczyk J, Janeczek H, Bero M. Synthesis of biodegradable copolymers with the use of low toxic zirconium compounds. 1. Copolymerization of glycolide with L-lactide initiated by Zr(Acac)4. Macromolecules. 2001;34:5090–8. doi:10.1021/ma0018143.

    Article  ADS  CAS  Google Scholar 

  13. Kokubo T, Ito S, Huang ZT, Hayashi T, Sakka S, Kitsugi T, et al. Ca,P-rich layer formed on high-strength bioactive glass–ceramic A-W. J Biomed Mater Res. 1990;24:331–43. doi:10.1002/jbm.820240306.

    Article  PubMed  CAS  Google Scholar 

  14. Pamuła E, Błażewicz M, Paluszkiewicz C, Dobrzyński P. FTIR study of degradation products of aliphatic polyesters carbon fibres composites. J Mol Struct. 2001;596:69–75. doi:10.1016/S0022-2860(01)00688-3.

    Article  ADS  Google Scholar 

  15. Murphy WL, Kohn DH, Mooney DJ. Growth of bone-like mineral within porous poly(lactide-co-glycolide) scaffolds in vitro. J Biomed Mater Res. 2000;50:50–8. doi:10.1002/(SICI)1097-4636(200004)50:1<50::AID-JBM8>3.0.CO;2-F.

    Article  PubMed  CAS  Google Scholar 

  16. Warnke PH, Douglas T, Wollny P, Sherry E, Steiner M, Galonska S, Becker ST, Springer IN, Wiltfang J, Sivananthan S. Rapid prototyping: porous titanium alloy scaffolds produced by selective laser melting (SLM) for bone tissue engineering. Tissue Eng C Methods. 2008 [Epub ahead of print].

  17. Kohn DH, Shin K, Hong S-I, Jayasuriya AC, Leonova EV, Rossello RA, et al. Self-assembled mineral scaffolds as model systems for biomineralization and tissue engineering. In: Landis WJ, Sodek J, editors. Proceedings of the eighth international conference on the chemistry and biology of mineralized tissues. Toronto, Canada: University of Toronto Press; 2005. p. 216.

  18. Luong LN, Hong SI, Patel RJ, Outslay ME, Kohn DH. Spatial control of protein within biomimetically nucleated mineral. Biomaterials. 2006;27:1175–86. doi:10.1016/j.biomaterials.2005.07.043.

    Article  PubMed  CAS  Google Scholar 

  19. Segvich SJ, Smith HC, Kohn DH. The adsorption of preferential binding peptides to apatite-based materials. Biomaterials. 2009;30:1287–98. doi:10.1016/j.biomaterials.2008.11.008.

    Article  PubMed  CAS  Google Scholar 

  20. Rai B, Teoh SH, Ho KH. An in vitro evaluation of PCL-TCP composites as delivery systems for platelet-rich plasma. J Control Release. 2005;107:330–42. doi:10.1016/j.jconrel.2005.07.002.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank the European Union for financial support within the framework of the MyJoint Project (FP-6 NEST 028861), Dr. P. Dobrzynski (CMPW, PAN, Zabrze, Poland) for the synthesis of PLGA, and G. Otto for excellent technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Timothy Douglas.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Douglas, T., Pamula, E., Hauk, D. et al. Porous polymer/hydroxyapatite scaffolds: characterization and biocompatibility investigations. J Mater Sci: Mater Med 20, 1909–1915 (2009). https://doi.org/10.1007/s10856-009-3756-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10856-009-3756-7

Keywords

Navigation