Skip to main content

Advertisement

Log in

The development of a scanning strategy for the manufacture of porous biomaterials by selective laser melting

  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

Porous structures are used in orthopaedics to promote biological fixation between metal implant and host bone. In order to achieve rapid and high volumes of bone ingrowth the structures must be manufactured from a biocompatible material and possess high interconnected porosities, pore sizes between 100 and 700 μm and mechanical strengths that withstand the anticipated biomechanical loads. The challenge is to develop a manufacturing process that can cost effectively produce structures that meet these requirements. The research presented in this paper describes the development of a ‘beam overlap’ technique for manufacturing porous structures in commercially pure titanium using the Selective Laser Melting (SLM) rapid manufacturing technique. A candidate bone ingrowth structure (71% porosity, 440 μm mean pore diameter and 70 MPa compression strength) was produced and used to manufacture a final shape orthopaedic component. These results suggest that SLM beam overlap is a promising technique for manufacturing final shape functional bone ingrowth materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Mont MA, Hungerford DS. Proximally coated ingrowth prostheses. A review. Clin Orthop Relat Res. 1997;344:139–49.

    Article  PubMed  Google Scholar 

  2. Crowninshield RD, Brand RA, Pedersen DR. A stress analysis of acetabular reconstruction in protrusio acetabuli. J Bone Joint Surg. 1983;65:495–9.

    PubMed  CAS  Google Scholar 

  3. Della Valle CJ, Berger RA, Shott S, Rosenberg AG, Jacobs JJ, Quigley L, et al. Primary total hip arthroplasty with a porous-coated acetabular component. A concise follow-up of a previous report. J Bone Joint Surg. 2004;86-A:1217–22.

    PubMed  Google Scholar 

  4. Engh CA, Hopper RH Jr. The Odyssey of porous-coated fixation. J Arthroplasty. 2002;17:102–7. doi:10.1054/arth.2002.32547.

    Article  PubMed  Google Scholar 

  5. McCutchen JW, Collier JP, Mayor MB. Osseointegration of titanium implants in total hip arthroplasty. Clin Orthop Relat Res.. 1990;261:114–25.

    PubMed  Google Scholar 

  6. Petersen MB, Poulsen IH, Thomsen J, Solgaard S. The hemispherical harris-galante acetabular cup, inserted without cement. The results of an eight to eleven-year follow-up of one hundred and sixty-eight hips. J Bone Joint Surg. 1999;81:219–24.

    PubMed  CAS  Google Scholar 

  7. Rodriguez JA. Acetabular fixation options: notes from the other side. J Arthroplasty. 2006;21:93–6. doi:10.1016/j.arth.2006.02.152.

    Article  PubMed  Google Scholar 

  8. Georgette FS, Davidson JA. The effect of HIPing on the fatigue and tensile strength of a case, porous-coated Co-Cr-Mo alloy. J Biomed Mater Res. 2004;20:1229–48.

    Article  Google Scholar 

  9. Manley MT, Kotzar G, Stern LS, Wilde A. Effects of repetitive loading on the integrity of porous coatings. Clin Orthop Relat Res. 1987;217:293–302.

    PubMed  CAS  Google Scholar 

  10. Hamman G. In: Lemons JE, editor. Quantitative characterization and performance of porous implants for hard tissue applications ASTM STP 953. Philadelphia: ASTM; 1987. p. 77.

    Chapter  Google Scholar 

  11. Bobyn JDPD, Pilliar RMPD, Cameron HUMD, Weatherly GCPD. The optimum pore size for the fixation of porous-surfaced metal implants by the ingrowth of bone. Clin Orthop Relat Res. 1980;150:263–70.

    PubMed  Google Scholar 

  12. Bobyn J, Stackpool G, Toh K-K, Hacking S, Tanzer M, Krygier J. Bone ingrowth characteristics and interface mechanics of a new porous tantalum biomaterial. J Bone Joint Surg. 1999;81-B:907–14. doi:10.1302/0301-620X.81B5.9283.

    Article  Google Scholar 

  13. Bobyn J, Toh K, Hacking S, Tanzer M, Krygier J. Tissue response to porous tantalum acetabular cups: a canine model. J Arthroplasty. 1999;13:347–54. doi:10.1016/S0883-5403(99)90062-1.

    Article  Google Scholar 

  14. Gruen TA, Poggie RA, Lewallen DG, Hanssen AD, Lewis RJ, O’Keefe TJ, et al. Radiographic evaluation of a mono-block acetabular component. J Arthroplasty. 2005;20:369–78. doi:10.1016/j.arth.2004.12.049.

    Article  PubMed  Google Scholar 

  15. Ward LP, Strafford KN, Wilks TP, Subramanian C. The roll of refractory element based coating on the tribological and biological behavior of orthopaedic implants. J Mater Process Technol. 1996;56:364–74. doi:10.1016/0924-0136(95)01850-6.

    Article  Google Scholar 

  16. Santos EC, Osakada K, Shiomi M, Kitamura Y, Abe F. Microstructure and mechanical properties of pure titanium models fabricated by selective laser melting. Proc Inst Mech Eng Part C J Mech Eng Sci. 2004;218:711–9.

    Article  CAS  Google Scholar 

  17. Arcella FG, Abbott DH, House MA. Rapid laser forming of titanium structures. Grenada, Spain: Metallurgy World Conference; 1998.

    Google Scholar 

  18. Gerbhardt A. Rapid prototyping. Munich: Hanser publishers; 2003.

    Google Scholar 

  19. Householder R. Molding process, US, 1979.

  20. Hopkinson N, Dickens PM. Emerging rapid manufacturing processes. In: Hopkinson N, Hague RJM, Dickens PM, editors. Rapid manufacturing: an industrial revolution for the digital age. USA: John Wiley & sons; 2006.

    Google Scholar 

  21. Chua CK, Leong KF, Lim CS. Powder-based rapid prototyping systems. In: Rapid prototyping: principles and applications. Singapore: World Scientific; 2003.

  22. Keicher DM, Love JW, Dullea KJ, Bullen JL, Gorman PH, Smith ME. Forming structures from CAD solid models. US Patent; 2004.

  23. Abbott DH, Arcella FG. Aeromet implementing novel Ti process. Met Powder Rep. 1998;53:24–6.

    Google Scholar 

  24. Abe F, Osakada K, Kitamura Y, Matsumoto M, Shiomi M. Manufacturing of titanium parts for medical purposes by selective laser melting. In: Rapid prototyping. Tokyo, Japan: University of Dayton; 2000. p. 288–293.

  25. Hollander DA, von Walter M, Wirtz T, Sellei R, Schmidt-Rohlfing B, Paar O, et al. Structural, mechanical and in vitro characterization of individually structured Ti–6Al–4V produced by direct laser forming. Biomaterials. 2006;27:955–63. doi:10.1016/j.biomaterials.2005.07.041.

    Article  PubMed  CAS  Google Scholar 

  26. Sercombe T, Jones N, Day R, Kop A. Heat treatment of Ti-6Al-7Nb components produced by selective laser melting. Rapid Prototyping J. 2008;14:300–4. doi:10.1108/13552540810907974.

    Article  Google Scholar 

  27. Hulbert SF, Klawitter JJ, Talbert CD, Fitts CT. Research in dental and medical materials. New York: Plenum; 1969. p. 19.

    Google Scholar 

  28. Nilles JL, Coletti JM, Wilson C. Biomechanical evaluation of bone porous material interfaces. J Biomed Mater Res. 1973;7:231–51. doi:10.1002/jbm.820070211.

    Article  Google Scholar 

  29. Harris WH, Jasty M. Bone ingrowth into porous coated canine acetabular replacements: the effect of pore size, apposition, and dislocation. Hip. 1985;214–34.

  30. Assad M, Jarzem P, Leroux MA, Coillard C, Chernyshov AV, Charette S, et al. Porous titanium-nickel for intervertebral fusion in a sheep model: part 1. Histomorphometric and radiological analysis. J Biomed Mater Res Appl Biomater. 2003;64B:107–20.

    Article  CAS  Google Scholar 

  31. Kusakabe H, Sakamaki T, Nihei K, Oyama Y, Yanagimoto S, Ichimiya M, et al. Osseointegration of a hydroxyapatite-coated multilayered mesh stem. Biomaterials. 2004;25:2957–69. doi:10.1016/j.biomaterials.2003.09.090.

    Article  PubMed  CAS  Google Scholar 

  32. Bergmann G, Deuretzbacher G, Heller M, Graichen F, Rohlmann A, Strauss J, et al. Hip contact forces and gait patterns from routine activities. J Biomech. 2001;34:859–71. doi:10.1016/S0021-9290(01)00040-9.

    Article  PubMed  CAS  Google Scholar 

  33. Bergmann G, Graichen F, Rohlmann A. Hip joint loading during walking and running, measured in two patients. J Biomech. 1993;26:969–90. doi:10.1016/0021-9290(93)90058-M.

    Article  PubMed  CAS  Google Scholar 

  34. Dalstra M, Huiskes R. Load transfer across the pelvic bone. J Biomech. 1995;28:715–24. doi:10.1016/0021-9290(94)00125-N.

    Article  PubMed  CAS  Google Scholar 

  35. Manley MT, Ong KL, Kurtz SM. The potential for bone loss in acetabular structures following THA. Clin Orthop Relat Res. 2006;453:246–53. doi:10.1097/01.blo.0000238855.54239.fd.

    Article  PubMed  Google Scholar 

  36. Rydell NW. Forces acting in the femoral head-prosthesis. Acta Orthop Scand. 1966;Suppl 88:37.

    Google Scholar 

  37. von Eisenhart R, Adam C, Steinlechner M, Muller-Gerbl M, Eckstein F. Quantitative determination of joint incongruity and pressure distribution during simulated gait and cartilage thickness in the human hip joint. J Orthop Res. 1999;17:532–9. doi:10.1002/jor.1100170411.

    Article  Google Scholar 

  38. Widmer KH, Zurfluh B, Morscher EW. Load transfer and fixation mode of press-fit acetabular sockets. J Arthroplasty. 2002;17:926–35. doi:10.1054/arth.2002.34526.

    Article  PubMed  Google Scholar 

  39. Dorr LD, Bloebaum R, Emmanual J, Meldrum R. Histologic, biochemical and ion analysis of tissue and fluids retrieved during total hip arthroplasty. Clin Orthop Relat Res. 1990;261:82–95.

    PubMed  Google Scholar 

  40. Shanbhag AS, Jacobs JJ, Black J, Galante JO, Glant TT. Cellular mediators secreted by interfacial membranes obtained at revision total hip arthroplasty. J Arthroplasty. 1995;10:498–506.

    Article  PubMed  CAS  Google Scholar 

  41. Willert HG, Semlitsch M. Reactions of the articular capsule to wear products of artificial joint prostheses. J Biomed Mater Res. 1977;11:157–64. doi:10.1002/jbm.820110202.

    Article  PubMed  CAS  Google Scholar 

  42. Tolochko NK, Arshinov MK, Gusarov AV, Titov VI, Laoui T, Froyen L. Mechanisms of selective laser sintering and heat transfer in Ti powder. Rapid Prototyping J. 2003;9:314–26. doi:10.1108/13552540310502211.

    Article  Google Scholar 

  43. ASTM. ASTM standard test methods of compression testing of metallic materials at room temperature. ASTM; 2000.

  44. Gibson LJ, Ashby MF. Cellular solids: structure and properties. Cambridge, UK: Cambridge University Press; 1999.

    Google Scholar 

  45. Anselme K, Bigerelle M. Topography effects of pure titanium substrates on human osteoblast long-term adhesion. Acta Biomater. 2005;1:211–22. doi:10.1016/j.actbio.2004.11.009.

    Article  PubMed  CAS  Google Scholar 

  46. Mullen L, Stamp R, Brooks WK, Jones E, Sutcliffe C. Selective laser melting: a regular unit cell approach for the manufacture of porous titanium constructs suitable for orthopaedic application. J Biomed Mater Res. Part B. 2009 (in press).

Download references

Acknowledgements

The authors would like to thank the Engineering and Physical Sciences Research Council (EPSRC) and Stryker Orthopaedics for funding this research. Thanks also to L. Bailey for technical support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Stamp.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stamp, R., Fox, P., O’Neill, W. et al. The development of a scanning strategy for the manufacture of porous biomaterials by selective laser melting. J Mater Sci: Mater Med 20, 1839–1848 (2009). https://doi.org/10.1007/s10856-009-3763-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10856-009-3763-8

Keywords

Navigation