Skip to main content
Log in

Immobilization of poly (ethylene imine) on poly (l-lactide) promotes MG63 cell proliferation and function

  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

Poly (ethylene imine) (PEI) is a polycation widely used for DNA transfection to cells but also applied as primary polycation for layer-by-layer (LBL) assembly of polyelectrolytes. The aim of the present study was to investigate the effect of modification with PEI on the biocompatibility of poly (l-lactide) (PLLA) films. PEI with different molecular weight was immobilized on PLLA by either adsorption or covalent binding. Cell morphologies, immuno-fluorescence staining, cell proliferation by lactate dehydrogenase assay and cell differentiation by alkaline phosphatase assay were utilized to assess the biocompatibility of the modified PLLA using osteoblast cell line MG63. Results revealed that PEI modification remarkably improved cell adhesion, viability, proliferation and function compared with plain PLLA. Hence, PEI-modified PLLA is acceptable as transfection vehicle for engineering of bone and other tissues, or as primary layer to allow LBL assembly to generate biomimetic surface coatings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Navarro M, Aparicio C, Charles-Harris M, Ginebra MP, Engel E, Planell JA. Development of a biodegradable composite scaffold for bone tissue engineering: physicochemical, topographical, mechanical, degradation, and biological properties. Adv Polym Sci. 2006;200:209–31. doi:10.1007/12_068.

    Article  CAS  Google Scholar 

  2. Silva GA, Ducheyne P, Reis RL. Materials in particulate form for tissue engineering. 1. Basic concepts. J Tissue Eng Regen Med. 2007;1:4–24. doi:10.1002/term.2.

    Article  CAS  PubMed  Google Scholar 

  3. Nieminen T, Rantala I, Hiidenheimo I, Keränen J, Kainulainen H, Wuolijoki E, et al. Degradative and mechanical properties of a novel resorbable plating system during a 3-year-follow-up in vivo and in vitro. J Mater Sci: Mater Med. 2008;19:1155–63. doi:10.1007/s10856-007-3082-x.

    Article  CAS  Google Scholar 

  4. Tzoneva R, Groth T, Altankov G, Paul D. Remodeling of fibrinogen by endothelial cells in dependence on fibronectin matrix assembly. Effect of substratum wettability. J Mater Sci: Mater Med. 2002;13:1235–44. doi:10.1023/A:1021131113711.

    Article  CAS  Google Scholar 

  5. Webb K, Hlady V, Tresco PA. Relative importance of surface wettability and charged functional groups on NIH 3T3 fibroblast attachment, spreading, and cytoskeletal organization. J Biomed Mater Res. 1998;41:422–30. doi:10.1002/(SICI)1097-4636(19980905)41:3<422::AID-JBM12>3.0.CO;2-K.

    Article  CAS  PubMed  Google Scholar 

  6. Altankov G, Groth T. Reorganization of substratum-bound fibronectin on hydrophilic and hydrophobic materials is related to biocompatibility. J Mater Sci: Mater Med. 1994;5:732–7. doi:10.1007/BF00120366.

    Article  CAS  Google Scholar 

  7. Faucheux N, Schweiss R, Lützow K, Werner C, Groth T. Self-assembled monolayers with different terminating groups as model subtrates for cell adhesion studies. Biomaterials. 2004;25:2721–30. doi:10.1016/j.biomaterials.2003.09.069.

    Article  CAS  PubMed  Google Scholar 

  8. Pompe T, Keller K, Mothes G, Nitschke M, Teese M, Zimmermann R, et al. Surface modification of poly (hydroxybutyrate) films to control cell-matrix adhesion. Biomaterials. 2007;28(1):28–37. doi:10.1016/j.biomaterials.2006.08.028.

    Article  CAS  PubMed  Google Scholar 

  9. Sperling C, Maitz MF, Talkenberger S, Gouzy M-F, Groth T, Werner C. In vitro blood reactivity to hydroxylated and non-hydroxylated polymer surfaces. Biomaterials. 2007;28:3617–25. doi:10.1016/j.biomaterials.2007.04.041.

    Article  CAS  PubMed  Google Scholar 

  10. Van Den Dolder J, Jansen JA. The response of osteoblast-like cells towards collagen type I coating immobilized by p-nitrophenylchloroformate to titanium. J Biomed Mater Res A. 2007;83:712–9. doi:10.1002/jbm.a.31428.

    PubMed  Google Scholar 

  11. Kamath S, Bhattacharyya D, Padukudru C, Timmons RB, Tang LP. Surface chemistry influences implant-mediated host tissue responses. J Biomed Mater Res A. 2008;86:617–26. doi:10.1002/jbm.a.31649.

    PubMed  Google Scholar 

  12. Liu Z-M, Xu Z-K, Wan L-S, Wu J, Ulbricht M. Surface modification of polypropylene microfiltration membranes by the immobilization of poly(N-vinyl-2-pyrrolidone): a facile plasma approach. J Membr Sci. 2005;249(1–2):21–31. doi:10.1016/j.memsci.2004.10.001.

    Article  CAS  Google Scholar 

  13. Klee D, Ademovic Z, Bosserhoff A, Hoecker H, Maziolis G, Erli H-J. Surface modification of poly(vinylidenefluoride) to improve the osteoblast adhesion. Biomaterials. 2003;24:3663–70. doi:10.1016/S0142-9612(03)00235-7.

    Article  CAS  PubMed  Google Scholar 

  14. Silvan MM, Valsesia A, Hasiwa M, Gilliland D, Ceccone G, Rossi F. Surface characterization of biopolymer micropatterns processed by ion-beam modification and PECVD. Chem Vapor Depos. 2007;13:211–8. doi:10.1002/cvde.200606580.

    Article  CAS  Google Scholar 

  15. Engel E, Michiardi A, Navarro M, Lacroix D, Planell JA. Nanotechnology in regenerative medicine: the materials side. Trends Biotechnol. 2008;26:39–47. doi:10.1016/j.tibtech.2007.10.005.

    Article  CAS  PubMed  Google Scholar 

  16. Salgado AJ, Wang Y, Mano JF, Reis RL. Influence of molecular weight and crystallinity of poly (L-lactic acid) on the adhesion and proliferation of human osteoblast like cells. Mater Sci Forum. 2006;514–516:1020–4. doi:10.4028/www.scientific.net/MSF.514-516.1020.

    Article  Google Scholar 

  17. Ho MH, Hou LT, Tu CY, Hsieh HJ, Lai JY, Chen WJ, et al. Promotion of cell affinity of porous PLLA scaffolds by immobilization of RGD peptides via plasma treatment. Macromol Biosci. 2006;6:90–8. doi:10.1002/mabi.200500130.

    Article  CAS  PubMed  Google Scholar 

  18. Zhao H, Ma L, Gong Y, Gao C, Shen J. A polylactide/fibrin gel composite scaffold for cartilage tissue engineering: fabrication and an in vitro evaluation. J Mater Sci: Mater Med. 2009;20:135–43. doi:10.1007/s10856-008-3543-x.

    Article  CAS  Google Scholar 

  19. Ariga K, Hill JP, Ji Q. Biomaterials and biofunctionality in layered macromolecular assemblies. Macromol Biosci. 2008;8:981–90. doi:10.1002/mabi.200800102.

    Article  CAS  PubMed  Google Scholar 

  20. Hammond PT. Form and function in multilayer assembly: new applicaitons at the nanoscale. Adv Mater. 2004;16:1271–93. doi:10.1002/adma.200400760.

    Article  CAS  Google Scholar 

  21. Tang Z, Wang Y, Podsiadlo P, Kotov NA. Biomedical applications of layer-by-layer assembly: from biomimetics to tissue engineering. Adv Mater. 2006;18:3203–24. doi:10.1002/adma.200600113.

    Article  CAS  Google Scholar 

  22. Neu M, Fischer D, Kissel T. Recent advances in rational gene transfer vector design based on poly (ethaylene imine) and its derivatives. J Gene Med. 2005;7:992–1009. doi:10.1002/jgm.773.

    Article  CAS  PubMed  Google Scholar 

  23. Burnot C, Ponsonnet L, Lagneau C, Farge P, Picart C, Grosgogeat B. Cytotoxicity of polyethyleneimine (PEI), precursor base layer of polyelectrolyte multilayer films. Biomaterials. 2007;28:632–40. doi:10.1016/j.biomaterials.2006.09.026.

    Article  Google Scholar 

  24. Bertschinger M, Backliwal G, Schertenleib A, Jordan M, Hacker DL, Wurm FM. Disassembly of polyethylenimine-DNA particles in vitro: Implications for polyethylenimine-mediated DNA. J Control Release. 2006;116:96–104. doi:10.1016/j.jconrel.2006.09.006.

    Article  CAS  PubMed  Google Scholar 

  25. Fisher D, Bieber T, Li Y, Elsässer HP, Kissel T. A novel non-viral vector for DNA delivery based on low molecular weight, branched polyethylenimine: effect of molecular weight on transfection efficiency and cytotoxicity. Pharm Res. 1999;16:1273–9. doi:10.1023/A:1014861900478.

    Article  Google Scholar 

  26. Moghimi SM, Symonds P, Murray JC, Hunter AC, Debska G, Szewczyk A. A two-stage poly(ethylenimine)-mediated cytotoxicity: implications for gene transfer/therapy. Mol Ther. 2005;11:990–5. doi:10.1016/j.ymthe.2005.02.010.

    Article  CAS  PubMed  Google Scholar 

  27. Trimpert C, Boese G, Albrecht W, Richau K, Weigel T, Lendlein A, et al. Poly(ether imide) membranes modified with poly (ethylene imine) as potential carriers for epidermal substitutes. Macromol Biosci. 2006;6:274–84. doi:10.1002/mabi.200500238.

    Article  CAS  PubMed  Google Scholar 

  28. Kirchhof K, Hristova K, Krasteva N, Altankov G, Groth T. Multilayer coating on biomaterials for control of MG-63 osteoblast adhesion and growth. J Mater Sci: Mater Med. 2009;20:897–907. doi:10.1007/s10856-008-3639-3.

    Article  CAS  Google Scholar 

  29. Charles-Harris M, Koch MA, Navarro M, Lacroix D, Engel E, Planell JAA. PLA/calcium phosphate degradable composite material for bone eittue engineering: an in vitro study. J Mater Sci: Mater Med. 2008;19:1503–13. doi:10.1007/s10856-008-3390-9.

    Article  CAS  Google Scholar 

  30. Nakayama Y, Takahagi T, Soeda F, Hatada K, Nagaoka S, Suzuki J, et al. XPS analysis of NH3 plasma-treated polystyrene films utilizing gas phase chemical modification. J Polym Sci A. 2003;26:559–72. doi:10.1002/pola.1988.080260219.

    Article  Google Scholar 

  31. Ren TB, Weigel T, Groth T. Microwave plasma surface modification of silicone elastomer with allylamine for improvement of biocompatibility. J Biomed Mater Res A. 2008;86:209–19. doi:10.1002/jbm.a.31508.

    CAS  PubMed  Google Scholar 

  32. Clover J, Gowen M. Are MG63 and HOS TE 85 human osteosarcoma cell lines representative models of the osteoblastic phenotype? Bone. 1994;15:585–91. doi:10.1016/8756-3282(94)90305-0.

    Article  CAS  PubMed  Google Scholar 

  33. Schwartz Z, Lohmann CH, Oefinger J, Bonewald LF, Dean DD, Boyan BD. Implant surface characteristics modulate differentiation behavior of cells in the osteoblastic lineage. Adv Dent Res. 1999;13:38–48. doi:10.1177/08959374990130011301.

    Article  CAS  PubMed  Google Scholar 

  34. Grinnell F, Feld MK. Adsorption characteristics of plasma fibronectin in relationship to biological activity. J Biomed Mater Res. 1981;15:363–81. doi:10.1002/jbm.820150308.

    Article  CAS  PubMed  Google Scholar 

  35. Renner L, Pompe T, Salchert K, Werner C. Fibronectin displacement at polymer surfaces. Langmuir. 2005;21:4571–7. doi:10.1021/la046801n.

    Article  CAS  PubMed  Google Scholar 

  36. Tryoen-Toth P, Vautier D, Haikel Y, Voegel JC, Schaaf P, Chluba J, et al. Viability, adhesion, and bone phenotype of osteoblast-like cells on polyelectrolyte multilayers films. J Biomed Mater Res. 2002;60:657–67. doi:10.1002/jbm.10110.

    Article  CAS  PubMed  Google Scholar 

  37. Michael KE, Vernekar VN, Keselowsky BG, Meredith JC, Latour RA, Garcia AJ. Adsorption-induced conformational changes in fibronectin due to interactions with well defined surface chemistries. Langmuir. 2003;19:8033–40. doi:10.1021/la034810a.

    Article  CAS  Google Scholar 

  38. Kowalczyńska HM, Nowak-Wyrzykowsk M, Dobkowski J, Kołos R, Kamiński J, Makowska-Cynka A, et al. Adsorption charcteristics of human plasma fibronectin in relationshsip to cell adhesion. J Biomed Mater Res. 2002;61:260–9. doi:10.1002/jbm.10151.

    Article  PubMed  Google Scholar 

  39. Pompe T, Kobe F, Salchert K, Jørgensen B, Oswald J, Werner C. Fibronectin anchorage to polymer substrates controls the initial phase of endothelial cell adhesion. J Biomed Mater Res A. 2003;67:647–57. doi:10.1002/jbm.a.10130.

    Article  PubMed  Google Scholar 

  40. Hynes RO. Integrins: versatility, modulation and signaling in cell adhesion. Cell. 1992;69:11–25. doi:10.1016/0092-8674(92)90115-S.

    Article  CAS  PubMed  Google Scholar 

  41. Bilbe G, Roberts E, Birch M, Evans DB. PCR phenotyping of cytokines, growth factors and their receptors and bone matrix proteins in human osteoblast-like cell lines. Bone. 1996;19:437–45. doi:10.1016/S8756-3282(96)00254-2.

    Article  CAS  PubMed  Google Scholar 

  42. Shirosaki Y, Tsur K, Hayakawa S, Osaka A, Lopes MA, Santos JD, et al. In vitro cytocompatibility of MG63 cells on chitosan-organosiloxane hybrid membranes. Biomaterials. 2005;26:485–93. doi:10.1016/j.biomaterials.2004.02.056.

    Article  CAS  PubMed  Google Scholar 

  43. Budyanto L, Goh YQ, Ooi CP. Fabrication of porous poly(L-lactide) (PLLA) scaffolds for tissue engineering using liquid-liquid phase separation and freeze extraction. J Mater Sci: Mater Med. 2009;20:105–11. doi:10.1007/s10856-008-3545-8.

    Article  CAS  Google Scholar 

  44. Li WZ, Ma N, Ong LL, Kaminski A, Skrabal C, Ugrlucan M, et al. Enhanced thoracic gene delivery by magnetic nanobead-mediated vector. J Gene Med. 2008;10:897–909. doi:10.1002/jgm.1208.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the Marie-Curie Incoming International Fellowship (Contract No. MIF1-CT-2005-021854) of European Commission to Dr. Z.-M. Liu. The authors are grateful to Prof. Shui-Ju Wang from State Key Laboratory of Physical Chemistry of Solid Surfaces, Xiamen University, Xiamen, P. R. China for XPS measurements.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhen-Mei Liu or Thomas Groth.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, ZM., Lee, SY., Sarun, S. et al. Immobilization of poly (ethylene imine) on poly (l-lactide) promotes MG63 cell proliferation and function. J Mater Sci: Mater Med 20, 2317–2326 (2009). https://doi.org/10.1007/s10856-009-3806-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10856-009-3806-1

Keywords

Navigation