Skip to main content
Log in

Preparation and characterization of hydroxyapatite/polycaprolactone–chitosan composites

  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

Hydroxyapatite (HA)/polycaprolactone (PCL)–chitosan (CS) composites were prepared by melt-blending. For the composites, the amount of HA was varied from 0% to 30% by weight. The morphology, structure and component of the composites were evaluated using environmental scanning electron microscope, X-ray diffraction and Fourier transform infrared spectroscope. The tensile properties were evaluated by tensile test. The bioactivity and degradation property were investigated after immersing in simulated body fluid (SBF) and physiological saline, respectively. The results show that the addition of HA to PCL–CS matrix tends to suppress the crystallization of PCL but improves the hydrophilicity. Adding HA to the composites decreases the tensile strength and elongation at break but increases the tensile modulus. After immersing in SBF for 14 days, the surface of HA/PCL–CS composites are covered by a coating of carbonated hydroxyapatite with low crystallinity, indicating the excellent bioactivity of the composites. Soaking in the physiological saline for 28 days, the molecular weight of PCL decreases while the mass loss of the composites and pH of physiological saline increase to 5.86% and 9.54, respectively, implying a good degradation property of the composites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Tadic D, Bechmann F, Donath T, Epple M. Comparison of different methods for the preparation of porous bone substitution materials and structural investigations by synchrotron (micro)-computer tomography. Materialwissenschaft und Werkstofftechnik. 2004;35:240–4.

    Article  CAS  Google Scholar 

  2. Sarasam AR, Krishnaswamy RK, Madihally SV. Blending chitosan with polycaprolactone: effects on physicochemical and antibacterial properties. Biomacromolecules. 2006;7:1131–8.

    Article  CAS  PubMed  Google Scholar 

  3. Bastioli C, Cerrutti A, Guanella I, Romano GC, Tosin M. Physical state and biodegradation behavior of starch-polycaprolactone systems. J Environ Polym Degrad. 1995;3:81–95.

    Article  CAS  Google Scholar 

  4. Zhu Y, Gao C, Liu X, Shen J. Surface modification of polycaprolactone membrane via aminolysis and biomacromolecule immobilization for promoting cytocompatibility of human endothelial cells. Biomacromolecules. 2002;6:1312–9.

    Article  Google Scholar 

  5. Cascone MG, Barbani N, Cristallini C, Giusti P, Ciardelli G, Lazzer L. Bioartificial polymeric materials based on polysaccharides. J Biomater Sci Polym Ed. 2001;12:267–81.

    Article  CAS  PubMed  Google Scholar 

  6. Ng KW, Khor HL, Hutmacher DW. In vitro characterization of natural and synthetic dermal matrices cultured with human dermal fibroblasts. Biomaterials. 2004;25:2807–18.

    Article  CAS  PubMed  Google Scholar 

  7. Ouattar B, Simard RE, Piett G, Bégin A, Holley RA. Inhibition of surface spoilage bacteria in processed meats by application of antimicrobial films prepared with chitosan. Int J Food Microbiol. 2000;62:139–48.

    Article  CAS  PubMed  Google Scholar 

  8. Chandy T, Sharma C. Chitosan-as a biolmaterial. Biomater Artif Cells Artif Organs. 1990;18:1–24.

    CAS  PubMed  Google Scholar 

  9. Goosen MFA. Appplications of chitin and chitosan. Lancaster, PA: Technomic Publishing Co Inc; 1997.

    Google Scholar 

  10. Seefried CG Jr, Koleske JV. Lactone polymers VI. Glass-transition temperatures of methyl-substituted ε-caprolactones and polymer blends. J Polym Sci Polym Phys Ed. 1975;13:851–6.

    Article  CAS  Google Scholar 

  11. Sun JJ, Bae CJ, Koh YH, Kim HE, Kim HW. Fabrication of hydroxyapatite-poly(ε-caprolactone) scaffolds by a combination of the extrusion and bi-axial lamination processes. J Mater Sci: Mater Med. 2007;18:1017–23.

    Article  CAS  Google Scholar 

  12. Roy DM, Linnehan SK. Hydroxyapatite formed from coral skeletal carbonate by hydrothermal exchange. Nature. 1974;247:220–2.

    Article  CAS  PubMed  ADS  Google Scholar 

  13. Lavernia C, Schoenung JM. Calcium phosphoate ceramics as bone-substitutes. Am Ceram Soc Bull. 1991;70:95–100.

    CAS  Google Scholar 

  14. Wang M, Joseph R, Bonfield W. Hydroxyapatite-polyethylene composites for bone substitution: effects of ceramic particle size and morphology. Biomaterials. 1998;19:2357–66.

    Article  CAS  PubMed  Google Scholar 

  15. Huang M, Feng JQ, Wang JX. Synthesis and characterization of nano-HA/PA66 composites. J Mater Sci: Mater Med. 2003;14:655–60.

    Article  CAS  Google Scholar 

  16. Ural E, Kesenci K, Migliaresi M, Piskin E. Poly(d, l-lactide/ε-caprolactone)/hydroxyapatite composites. Biomaterials. 2000;21:2147–54.

    Article  CAS  PubMed  Google Scholar 

  17. Zhang SM, Cui FZ, Liao SS, Zhu Y, Han L. Synthesis and biocompatibility of porous nano-hydroxya-patite/collagen/alginate composite. J Mater Sci: Mater Med. 2003;14:641–5.

    Article  CAS  Google Scholar 

  18. Correlo VM, Boesel LF, Bhattacharya M, Mano JF, Neves NM, Reis RL. Hydroxyapatite reinforced chitosan and polyester blends for biomedical applications. Macromol Mater Eng. 2005;290:1157–65.

    Article  CAS  Google Scholar 

  19. Wong SC, Bji A. Fracture strength and adhesive strength of hydroxyapatite-filled polycaprolactone. J Mater Sci: Mater Med. 2008;19:929–36.

    Article  CAS  Google Scholar 

  20. Frank A, Rath SK, Boey F, Venkatraman S. Study of the initial stages of drug release from a degradable matrix of poly (dl-lactide-co-glycolide). Biomaterials. 2004;25:813–21.

    Article  CAS  PubMed  Google Scholar 

  21. Tas AC. Synthesis of biomimetic Ca-hydroxyapatite powders at 37°C in synthetic body fluids. Biomaterials. 2000;21:1429–38.

    Article  CAS  PubMed  Google Scholar 

  22. Barbanti SH, Zavaglia CAC, Duek EAR. Effect of salt leaching on PCL and PLGA (50/50) resorbable scaffolds. Mater Res. 2008;11:75–80.

    CAS  Google Scholar 

  23. Pitt CG. Polycaprolactone and its copolymers. In: Chasin M, Langer R, editors. Biodegradable polymer as drug deliver systems. New York: Marcel Dekker Inc; 1990. p. 71–119.

    Google Scholar 

  24. Halabalova W, Simek L, Dostal J, Bohdanecky M. Note on the relation between the parameters of the Mark-Houwink-Kuhn-Sakurada equation. Int J Polym Anal Charact. 2004;9:65–75.

    Article  CAS  Google Scholar 

  25. Chatani Y, Okita H, Tadokoro H, Yamashita Y. Structural studies of polyesters III. Crystal structure of poly-e-caprolactone. Polym J. 1970;1:555–62.

    Article  CAS  Google Scholar 

  26. Nie KM, Pang WM, Wang YS, Lu F, Zhu QR. Spectral study on intermolecular coupling interaction and relation to microstructure in polyester/inorganic hybrid materials. Spectrosc Spect Anal. 2005;25:537–40.

    CAS  Google Scholar 

  27. Chen HL, Li LJ, Lin TL. Formation of segregation morphology in crystalline/amorphous polymer blends: molecular weight effect. Macromolecules. 1998;31:2255–64.

    Article  CAS  ADS  Google Scholar 

  28. Pukanszky B, Maurez FHJ, Boode JW. Impact testing of polypropylene blends and composites. Polym Eng Sci. 1995;35:1962–71.

    Article  CAS  Google Scholar 

  29. Mani R, Bhattacharya M. Properties of injection moulded blends of starch and modified biodegradable polyesters. Eur Polym J. 2001;37:515–26.

    Article  CAS  Google Scholar 

  30. Davis JE, Baldan N. Scanning electron microscopy of the bone—bioactive implant interface. J Biomed Mater Res. 1997;36:429–40.

    Article  Google Scholar 

  31. Marcolongo M, Ducheyne P, Garino J, Schepers E. Bioactive glass fiber/polymeric composites bond to bone tissue. J Biomed Mater Res. 1998;39:161–70.

    Article  CAS  PubMed  Google Scholar 

  32. Xiao XF, Liu RF, Gao YJ. Hydrothermal preparation of nanocarbonated hydroxyapatite crystallites. Mater Sci Technol. 2008;24:1199–203.

    Article  CAS  Google Scholar 

  33. Zhang QY, Chen JY, Feng JM, Cao Y, Deng CL, Zhang XD. Dissolution and mineralization behaviors of HA coatings. Biomaterials. 2003;24:4741–8.

    Article  CAS  PubMed  Google Scholar 

  34. Chouzouri G, Xanthos M. In vitro bioactivity and degradation of polycaprolactone composites containing silicate fillers. Acta Biomater. 2007;3:745–56.

    Article  CAS  PubMed  Google Scholar 

  35. Mano JF, Sousa RA, Boesel LF, Neves NM, Reis RL. Bioinert, biodegradable and injectable polymeric matrix composites for hard tissue replacement: state of the art and recent developments. Comp Sci Technol. 2004;64:789–817.

    Article  CAS  Google Scholar 

  36. Proikakis CS, Mamouzelos NJ, Tarantili PA, Andreopoulos AG. Swelling and hydrolytic degradation of poly(d, l-lactic acid) in aqueous solutions. Polym Degrad Stab. 2006;91:614–9.

    Article  CAS  Google Scholar 

  37. Lei Y, Rai B, Ho KH, Teoh SH. In vitro degradation of novel bioactive polycaprolactone-20% tricalcium phosphate composite scaffolds for bone engineering. Mater Sci Eng C. 2007;27:293–8.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thanks National Nature Science Foundation of China (30600149), the science research foundation of ministry of Health & United Fujian Provincial Health and Education Project for Tackling the Key Research (WKJ 2008-2-037), the Project of Education Department (209061, JA08030) and Fujian Provincial Department of Science and Technology (No. 2006I0015).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rongfang Liu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xiao, X., Liu, R., Huang, Q. et al. Preparation and characterization of hydroxyapatite/polycaprolactone–chitosan composites. J Mater Sci: Mater Med 20, 2375–2383 (2009). https://doi.org/10.1007/s10856-009-3810-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10856-009-3810-5

Keywords

Navigation