Skip to main content
Log in

Heat denatured/aggregated albumin-based biomaterial: effects of preparation parameters on biodegradability and mechanical properties

  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

Albumin-based biomaterials prepared using heat-aggregation or cross-linking agents have been used in various biomedical applications such as solder materials for laser-assisted tissue welding, anti-bacterial coatings and drug carriers. In this study, solid albumin-based materials were prepared via heat aggregation of albumin solution. The study aimed to determine the influences of the preparation parameters such as albumin concentration in solution, solution pH and temperature, on the mechanical properties as well as the biodegradation rate of heat-aggregated albumin-based materials. The results demonstrated that the materials prepared from the albumin solution with the pH of 8.5 had the highest mechanical strength. Augmenting the albumin concentration in solution led to an increase in mechanical strength, and the materials prepared from the solution with isoelectric albumin pH (pH 4.8) possessed the lowest biodegradation rate and those prepared at pH 12 showed the highest biodegradation rate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Lanza RP, Langer R, Vacanti J. Principles of tissue engineering. San Diego: Academic Press; 2000.

    Google Scholar 

  2. Ratner RD, Hoffman AS, Schoen FJ, Lemons JE. Biomaterials science. San Diego: Academic Press; 1996.

    Google Scholar 

  3. Ratner RD, Bryant SJ. Biomaterials: where we have been and where we are going. Annu Rev Biomed Eng. 2004;6:41–75. doi:10.1146/annurev.bioeng.6.040803.140027.

    Article  CAS  PubMed  Google Scholar 

  4. Clarke RC, Courts A, editors. The chemical reactivity of gelatin. London: Academic press; 1977.

    Google Scholar 

  5. Yapel A. Albumin medicament carrier system, (US, 1979).

  6. Geiger M, Li RH, Friess W. Collagen sponges for bone regeneration with rhBMP-2. Adv Drug Deliv Rev. 2003;55:1613–29. doi:10.1016/j.addr.2003.08.010.

    Article  CAS  PubMed  Google Scholar 

  7. Maitz PK, Trickett RI, Dekker P, Tos P, Dawes JM, Piper JA, et al. Sutureless microvascular anastomoses by a biodegradable laser-activated solid protein solder. Plast Reconstr Surg. 1999;104:1726–31. doi:10.1097/00006534-199911000-00017.

    Article  CAS  PubMed  Google Scholar 

  8. Trickett RI, Wang D, Maitz PK, Lanzetta M, Owen ER. Laser welding of vas deferens in rodents: initial experience with fluid solders. Microsurgery. 1998;18:414–8. doi:10.1002/(SICI)1098-2752(1998)18:7<414::AID-MICR5>3.0.CO;2-W.

    Article  CAS  PubMed  Google Scholar 

  9. Bass LS, Treat MR. Laser tissue welding: a comprehensive review of current and future clinical applications review. Lasers Surg Med. 1995;17:315–49. doi:10.1002/lsm.1900170402.

    Article  CAS  PubMed  Google Scholar 

  10. Park HY, Song IH, Kim JH, Kim WS. Preparation of thermally denatured albumin geland its pH-sensitive swelling. Int J Pharm. 1998;175:231–6. doi:10.1016/S0378-5173(98)00289-0.

    Article  CAS  Google Scholar 

  11. An YH, Stuart GW, McDowell SJ, McDaniel SE, Kang Q, Friedman RJ. Prevention of bacterial adherence to implant surfaces with a cross-linked albumin coating in vitro. J Orthop Res. 1996;14:846–9. doi:10.1002/jor.1100140526.

    Article  CAS  PubMed  Google Scholar 

  12. Kinnari TJ, Rihkanen H, Laine T, Salonen EM, Jero J. Albumin-coated tympanostomy tubes: prospective, double-blind clinical study. Laryngoscope. 2004;114:2038–43. doi:10.1097/01.mlg.0000147944.20676.17.

    Article  PubMed  Google Scholar 

  13. Yu Z, Garcia AS, Johnston KP, Williams RO. Spray freezing into liquid nitrogen for highly stable protein nanostructured microparticles. Eur J Pharm Biopharm. 2004;58:529–37. doi:10.1016/j.ejpb.2004.04.018.

    Article  CAS  PubMed  Google Scholar 

  14. Santhi K, Dhanaraj SA, Joseph V, Ponnusankar S, Sureh B. A study on the preparation and anti-tumor efficacy of bovine serum albumin nanospheres containing 5-fluorouracil. Drug Dev Ind Pharm. 2002;28:1171–9. doi:10.1081/DDC-120014584.

    Article  CAS  PubMed  Google Scholar 

  15. Wetzel R, Becker M, Behlke J, Billwitz H, Bohm S, Ebert B, et al. Temperature behaviour of human serum albumin. Eur J Biochem. 1980;104:469–78. doi:10.1111/j.1432-1033.1980.tb04449.x.

    Article  CAS  PubMed  Google Scholar 

  16. Clark AH, Saunderson DHP, Suggett A. Infrared and laser-Raman spectroscopic studies of thermally-induced globular protein gels. Int J Pept Protein Res. 1981;17:353–64.

    CAS  PubMed  Google Scholar 

  17. Nakamura R, Sugiyama H, Sato Y. Factors contributing to heat-induced aggregation of ovalbumin. Agric Biol Chem. 1978;42:819–24.

    CAS  Google Scholar 

  18. Woodward SA, Cotterill OJ. Texture and microstructure of heat-formed egg white gels. J Food Sci. 1986;51:333–9. doi:10.1111/j.1365-2621.1986.tb11123.x.

    Article  CAS  Google Scholar 

  19. Shimada K, Matsushita S. Thermal coagulation of bovine serum albumin. Agric Biol Chem. 1981;45:1945–52.

    CAS  Google Scholar 

  20. Wright B, Vicaretti M, Schwaiger N, Wu J, Trickett R, Morrissey L, et al. Laser-assisted end-to-end BioWeld anastomosis in an ovine model. Lasers Surg Med. 2007;39:667–73. doi:10.1002/lsm.20541.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The study was fully supported by Avastra Ltd (Brisbane, Australia).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ramin Rohanizadeh.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rohanizadeh, R., Kokabi, N. Heat denatured/aggregated albumin-based biomaterial: effects of preparation parameters on biodegradability and mechanical properties. J Mater Sci: Mater Med 20, 2413–2418 (2009). https://doi.org/10.1007/s10856-009-3819-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10856-009-3819-9

Keywords

Navigation