Skip to main content

Advertisement

Log in

Enhanced cell adhesion to silicone implant material through plasma surface modification

  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

Silicone implant material is widely used in the field of plastic surgery. Despite its benefits the lack of biocompatibility this material still represents a major problem. Due to the surface characteristics of silicone, protein adsorption and cell adhesion on this polymeric material is rather low. The aim of this study was to create a stable collagen I surface coating on silicone implants via glow-discharge plasma treatment in order to enhance cell affinity and biocompatibility of the material. Non-plasma treated, collagen coated and conventional silicone samples (non-plasma treated, non-coated) served as controls. After plasma treatment the change of surface free energy was evaluated by drop-shape analysis. The quality of the collagen coating was analysed by electron microscopy and Time-Of-Flight Secondary Ion Mass Spectrometry. For biocompatibility tests mouse fibroblasts 3T3 were cultivated on the different silicone surfaces and stained with calcein-AM and propidium iodine to evaluate cell viability and adherence. Analysis of the different surfaces revealed a significant increase in surface free energy after plasma pre-treatment. As a consequence, collagen coating could only be achieved on the plasma activated silicone samples. The in vitro tests showed that the collagen coating led to a significant increase in cell adhesion and cell viability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Brohim RM, Foresman PA, Hildebrandt PK, Rodeheaver GT. Early tissue reaction to textured breast implant surfaces. Ann Plast Surg. 1992;28:354–62.

    Article  CAS  PubMed  Google Scholar 

  2. Barnsley GP, Sigurdson LJ, Barnsley SE. Textured surface breast implants in the prevention of capsular contracture among breast augmentation patients: a meta-analysis of randomized controlled trials. Plast Reconstr Surg. 2006;117:2182–90.

    Article  CAS  PubMed  Google Scholar 

  3. Tarpila E, Ghassemifar R, Fagrell D, Berggren A. Capsular contracture with textured versus smooth saline-filled implants for breast augmentation: a prospective clinical study. Plast Reconstr Surg. 1997;99:1934–9.

    Article  CAS  PubMed  Google Scholar 

  4. Siggelkow W, Faridi A, Spiritus K, Klinge U, Rath W, Klosterhalfen B. Histological analysis of silicone breast implant capsules and correlation with capsular contracture. Biomaterials. 2003;24:1101–9.

    Article  CAS  PubMed  Google Scholar 

  5. Prantl L, Schreml S, Fichtner-Feigl S, Pöppl N, Eisenmann-Klein M, Schwarze H, et al. Clinical and morphological conditions in capsular contracture formed around silicone breast implants. Plast Reconstr Surg. 2007;120:275–84.

    Article  CAS  PubMed  Google Scholar 

  6. Carpaneda CA. Inflammatory reaction and capsular contracture around smooth silicone implants. Aesthetic Plast Surg. 1997;21:110–4.

    Article  CAS  PubMed  Google Scholar 

  7. Toth C, Szabo G, Kovacs L, Vargha K, Barabas J, Nemeth Z. Titanium implants with oxidized surfaces: the background and long-term results. Smart Mater Struct. 2002;11:813–8.

    Article  CAS  ADS  Google Scholar 

  8. Habal MB. The biologic basis for the clinical application of the silicones. A correlate to their biocompatibility. Arch Surg. 1984;119:843–8.

    CAS  PubMed  Google Scholar 

  9. Poeppl N, Schreml S, Lichtenegger F, Lenich A, Eisenmann-Klein M, Prantl L. Does the surface structure of implants have an impact on the formation of a capsular contracture? Aesth Plast Surg. 2007;31:133–9.

    Article  CAS  Google Scholar 

  10. Friemann J, et al. Physiologic and pathologic patterns of reaction to silicone breast implants. Zentralbl Chir. 1997;122:551–64.

    CAS  PubMed  Google Scholar 

  11. Roach P, Eglin D, Rohde K, Perry CC. Modern biomaterials: a review—bulk properties and implications of surface modifications. J Mater Sci: Mater Med. 2007;18:1263–77.

    Article  CAS  Google Scholar 

  12. Wagner WC. A brief introduction to advanced surface modification technologies. J Oral Implantol. 1992;18:231–5.

    CAS  PubMed  Google Scholar 

  13. Moisan M, Barbeau J, Moreau S, Pelletier J, Tabrizian M, Yahia LH. Low-temperature sterilization using gas plasmas: a review of the experiments and an analysis of the inactivation mechanisms. Int J Pharm. 2001;226:1–21.

    Article  CAS  PubMed  Google Scholar 

  14. Yasuda H, Gazicki M. Biomedical applications of plasma polymerization and plasma treatment of polymer surfaces. Biomaterials. 1982;3:68–77.

    Article  CAS  PubMed  Google Scholar 

  15. Ratner BD. New ideas in biomaterials science—a path to engineered biomaterials. J Biomed Mater Res. 1993;27:837–50.

    Article  CAS  PubMed  Google Scholar 

  16. Lerouge S, Wertheimer MR, Marchand R, Tabrizian M, Yahia L. Effect of gas composition on spore mortality and etching during low-pressure plasma sterilization. J Biomed Mater Res. 2000;51:128–35.

    Article  CAS  PubMed  Google Scholar 

  17. Hauser J, Halfmann H, Awakowicz P, Köller M, Esenwein SA. A double inductively coupled low-pressure plasma for sterilization of medical implant materials. Biomed Tech (Berl). 2008;53:199–203.

    Article  Google Scholar 

  18. Lee JH, Lee HB. Platelet adhesion onto wettability gradient surfaces in the absence and presence of plasma proteins. J Biomed Mater Res. 1998;41:304–11.

    Article  CAS  PubMed  Google Scholar 

  19. Xu LC, Siedlecki CA. Effects of surface wettability and contact time on protein adhesion to biomaterial surfaces. Biomaterials. 2007;28:3273–83.

    Article  CAS  PubMed  Google Scholar 

  20. Lee SD, Hsiue GH, Chang PC, Kao CY. Plasma-induced grafted polymerization of acrylic acid and subsequent grafting of collagen onto polymer film as biomaterials. Biomaterials. 1996;17:1599–608.

    Article  CAS  PubMed  Google Scholar 

  21. Stadlinger B, Pilling E, Mai R, Bierbaum S, Berhardt R, Scharnweber D, et al. Effect of biological implant surface coatings on bone formation, applying collagen, proteoglycans, glycosaminoglycans and growth factors. J Mater Sci: Mater Med. 2008;19:1043–9.

    Article  CAS  Google Scholar 

  22. Rammelt S, Illert T, Bierbaum S, Scharnweber D, Zwipp H, Schneiders W. Coating of titanium implants with collagen, RGD peptide and chondroitin sulfate. Biomaterials. 2006;27:5561–71.

    Article  CAS  PubMed  Google Scholar 

  23. Zhao JH, Wang J, Tu M, Luo BH, Zhou CR. Improving the cell affinity of a poly(d,l-lactide) film modified by grafting collagen via a plasma technique. Biomed Mater. 2006;1:247–52.

    Article  CAS  PubMed  ADS  Google Scholar 

  24. Keresztes Z, Rouxhet PG, Remacle C, Dupont-Gillain C. Supramolecular assemblies of adsorbed collagen affect the adhesion of endothelial cells. J Biomed Mater Res A. 2006;76:223–33.

    CAS  PubMed  Google Scholar 

  25. Svendsen JR, Kontogeorgis GM, Kiil S, Weinell CE, Gronlund M. Adhesion between coating layers based on epoxy and silicone. J Colloid Interface Sci. 2007;316:678–86.

    Article  CAS  PubMed  Google Scholar 

  26. Ksander GA. Collagen coatings reduce the incidence of capsule contracture around soft silicone rubber implants in animals. Ann Plast Surg. 1988;20:215–24.

    Article  CAS  PubMed  Google Scholar 

  27. Ksander GA, Gray L. Reduced capsule formation around soft silicone rubber prostheses coated with solid collagen. Ann Plast Surg. 1985;14:351–60.

    Article  CAS  PubMed  Google Scholar 

  28. Gölander CG, Lassen B, Nilsson-Ekdahl K, Nilsson UR. RF-plasma-modified polystyrene surfaces for studying complement activation. J Biomater Sci Polym Ed. 1992;4:25–30.

    PubMed  Google Scholar 

  29. Yang J, Bei J, Wang S. Enhanced cell affinity of poly (d,l-lactide) by combining plasma treatment with collagen anchorage. Biomaterials. 2002;23:2607–14.

    CAS  PubMed  Google Scholar 

  30. Williams RL, Krishna Y, Dixon S, Haridas A, Grierson I, Sheridan C. Polyurethanes as potential substrates for sub-retinal retinal pigment epithelial cell transplantation. J Mater Sci: Mater Med. 2005;16:1087–92.

    Article  CAS  Google Scholar 

  31. Wilson DJ, Rhodes NP, Williams RL. Surface modification of a segmented polyetherurethane using a low-powered gas plasma and its influence on the activation of the coagulation system. Biomaterials. 2003;24:5069–81.

    Article  CAS  PubMed  Google Scholar 

  32. Baier RE, Meyer AE, Natiella JR, Natiella RR, Carter JM. Surface properties determine bioadhesive outcomes: methods and results. J Biomed Mater Res. 1984;18:327–55.

    Article  CAS  PubMed  Google Scholar 

  33. Dean JW 3rd, Culbertson KC, D’Angelo AM. Fibronectin and laminin enhance gingival cell attachment to dental implant surfaces in vitro. Int J Oral Maxillofac Implants. 1995;10:721–8.

    PubMed  Google Scholar 

  34. Underwood PA, Bennett FA. A comparison of the biological activities of the cell-adhesive proteins vitronectin and fibronectin. J Cell Sci. 1989;93:641–9.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Hauser.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hauser, J., Zietlow, J., Köller, M. et al. Enhanced cell adhesion to silicone implant material through plasma surface modification. J Mater Sci: Mater Med 20, 2541–2548 (2009). https://doi.org/10.1007/s10856-009-3826-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10856-009-3826-x

Keywords

Navigation