Skip to main content
Log in

Silk fibroin/chitosan–hyaluronic acid versus silk fibroin scaffolds for tissue engineering: promoting cell proliferations in vitro

  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

The feasibility of silk fibroin protein (SF) scaffolds for tissue engineering applications to promote cell proliferation has been demonstrated, as well as the ability to mimic natural extra-cellular matrix (ECM), SF/chitosan (CS), a polysaccharide, scaffolds for tissue engineering. However, the response of cells to SF/CS–hyaluronic acid (SF/CS–HA) scaffolds has not been examined, which this study attempts to do and then compares those results with those of SF scaffolds. SF/CS–HA microparticles were fabricated to produce scaffolds in order to examine the proliferations of human dermal fibroblasts (HDF) in the scaffolds. Positive zeta potentials and ATR-FTIR spectra confirmed the co-existence of SF and CS–HA in SF/CS–HA microparticles. HDF proliferated well and migrated into SF/CS–HA scaffolds for around 160 μm in depth, as well as those in SF scaffolds after 7 days of cultivation, as observed using confocal microscopy. Interestingly, HDF grown in SF/CS–HA scaffolds had a markedly higher cell density than that in SF ones. Additionally, MTT assay revealed that the growth rates of HDF in SF/CS–HA scaffolds significantly exceeded (P < 0.01, n = 5) those in scaffolds of SF and SF/CS. The daily glucose consumptions and lactate formations, metabolic parameters, of HDF grown in SF/CS–HA and SF/CS scaffolds were significantly higher (P < 0.01, n = 3) than those in SF ones in most culturing days. Results of this study suggest that SF/CS–HA scaffolds have better cell responses for tissue engineering applications than SF ones.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Vepari C, Kaplan DL. Silk as a biomaterial. Prog Polym Sci. 2007;32:991–1007.

    Article  CAS  PubMed  Google Scholar 

  2. Yanagisawa S, Zhu Z, Kobayashi I, Uchino K, Tamada Y, Tamura T. Improving cell-adhesive properties of recombinant Bombyx mori silk by incorporation of collagen or fibronectin derived peptides produced by transgenic silkworms. Biomacromolecules. 2007;8(11):3487–92.

    Article  CAS  PubMed  Google Scholar 

  3. Panilaitis B, Altman GH, Chen J, Jin HJ, Karageorgiou V, Kaplan DL. Macrophage responses to silk. Biomaterials. 2003;24(18):3079–85.

    Article  CAS  PubMed  Google Scholar 

  4. Vepari C, Jin HJ, Kim HY, Kaplan DL. Electrospun silk-BMP-2 scaffolds for bone tissue engineering. Biomaterials. 2006;27(16):3115–24.

    Article  PubMed  Google Scholar 

  5. Fan H, Liu H, Toh SL, Goh JC. Enhanced differentiation of mesenchymal stem cells co-cultured with ligament fibroblasts on gelatin/silk fibroin hybrid scaffold. Biomaterials. 2008;29(8):1017–27.

    Article  CAS  PubMed  Google Scholar 

  6. Unger RE, Peters K, Wolf M, Motta A, Migliaresi C, Kirkpatrick CJ. Endothelialization of a non-woven silk fibroin net for use in tissue engineering: growth and gene regulation of human endothelial cells. Biomaterials. 2004;25(21):5137–46.

    Article  CAS  PubMed  Google Scholar 

  7. Sugihara A, Sugiura K, Morita H, Ninagawa T, Tubouchi K, Tobe R. Promotive effects of a silk film on epidermal recovery from full-thickness skin wounds. Proc Soc Exp Biol Med. 2000;225(1):58–64.

    Article  CAS  PubMed  Google Scholar 

  8. Kardestuncer T, McCarthy MB, Karageorgiou V, Kaplan D, Gronowicz G. RGD-tethered silk substrate stimulates the differentiation of human tendon cells. Clin Orthop Relat Res. 2006;448:234–9.

    Article  CAS  PubMed  Google Scholar 

  9. Cai K, Rechtenbach A, Hao J, Bossert J, Jandt KD. Polysaccharide-protein surface modification of titanium via a layer-by-layer technique: characterization and cell behaviour aspects. Biomaterials. 2005;26(30):5960–71.

    Article  CAS  PubMed  Google Scholar 

  10. Gobin AS, Froude VE, Mathur AB. Structural and mechanical characteristics of silk fibroin and chitosan blend scaffolds for tissue regeneration. J Biomed Mater Res A. 2005;74:324–34.

    Google Scholar 

  11. Engbers-Buijtenhuijs P, Buttafoco L, Poot AA, Dijkstra PJ, De Vos RAI, Sterk LM, et al. Silk fibroin/chitosan scaffold: preparation, characterization, and culture with HepG2 cell. J Mater Sci Mater Med. 2008;19(12):3545–53.

    Article  Google Scholar 

  12. Silva SS, Motta A, Rodrigues MT, Pinheiro AF, Gomes ME, Mano JF. Novel genipin-cross-linked chitosan/silk fibroin sponges for cartilage engineering strategies. Biomacromolecules. 2008;9(10):2764–74.

    Article  CAS  PubMed  Google Scholar 

  13. Lanza RP, Langer R, Vancanti J, editors. Principles of tissue engineering. 2nd ed. San Diego, CA: Academic Press; 2000.

    Google Scholar 

  14. Martino AD, Sittinger M, Risbud MV. Chitosan: a versatile biopolymer for othopaedic tissue-engineering. Biomaterials. 2005;26(10):5983–90.

    Article  PubMed  Google Scholar 

  15. Chung TW, Wang YZ, Pan CI, Wang SS, Fu Eur. Poly (ε-caprolactone) grafted with chitosan enhances growth of human fibroblasts––effects of different degree of surface nano-roughness. J Mater Sci Mater Med. 2009;20:397–404.

    Article  CAS  PubMed  Google Scholar 

  16. Chung TW, Wang SS, Tsai WJ. Accelerating thrombolysis with chitosan-coated plasminogen activators encapsulated in poly-(lactide-co-glycolide) (PLGA) nanoparticles. Biomaterials. 2008;29(2):228–37.

    Article  CAS  PubMed  Google Scholar 

  17. Gross-Jendroska M, Lui GM, Song MK, Stern R. Retinal pigment epithelium-stromal interactions modulate hyaluronic acid deposition. Invest Ophthalmol Vis Sci. 1992;33(12):3394–9.

    CAS  PubMed  Google Scholar 

  18. Yoo HS, Lee EA, Yoon JJ, Park TG. Hyaluronic acid modified biodegradable scaffolds for cartilage tissue engineering. Biomaterials. 2005;26(14):1925–33.

    Article  CAS  PubMed  Google Scholar 

  19. Dechert TA, Ducale AE, Ward SI, Yager DR, Dechert TA, Ducale AE, et al. Hyaluronan in human acute and chronic dermal wounds. Wound Repair Regen. 2006;14(3):252–8.

    Article  PubMed  Google Scholar 

  20. Inoue S, Tanaka K, Arisaka F, Kimura S, Ohtomo K, Mizuno S. Silk fibroin of Bombyx mori is secreted, assembling a high molecular mass elementary unit consisting of H-chain, L-chain, and P25, with a 6:6:1 molar ratio. J Biol Chem. 2000;275(51):40517–28.

    Article  CAS  PubMed  Google Scholar 

  21. Karageorgiou V, Tomkins M, Fajardo R, Meinel L, Snyder B, Wade K. Porous silk fibroin 3-D scaffolds for delivery of bone morphogenetic protein-2 in vitro and in vivo. J Biomed Mater Res A. 2006;78(2):324–34.

    PubMed  Google Scholar 

  22. Kim UJ, Park J, Kim HJ, Wada M, Kaplan DL. Three- dimensional aqueous-derived biomaterial scaffolds from silk fibroin. Biomaterials. 2005;26:2775–85.

    Article  CAS  PubMed  Google Scholar 

  23. Lin YS, Wang SS, Chung TW, Wang YH, Chiou SH, Hsu JJ, et al. Growth of endothelial cells on different concentrations of Gly-Arg-Gly-Asp photochemically grafted in polyethylene glycol modified polyurethane. Artif Organs. 2001;25(8):617–21.

    Article  CAS  PubMed  Google Scholar 

  24. Chung TW, Wang YZ, Huang YY, Pan CI, Wang SS. Poly (ε-caprolactone) grafted with nano-structured chitosan enhances growth of human dermal fibroblasts. Artif Organs. 2006;30(1):35–41.

    Article  CAS  PubMed  Google Scholar 

  25. Gerlier D, Thomasset N. Use of MTT colorimetric assay to measure cell activation. J Immunol Methods. 1986;94(1–2):57–63.

    Article  CAS  PubMed  Google Scholar 

  26. Chung TW, Yang MG, Liu DZ, Chen WP, Pan CI, Wang SS. Enhancing growth human endothelial cells on Arg-Gly-Asp (RGD) embedded poly (ε-caprolactone) (PCL) surface with nanometer scale of surface disturbance. J Biomed Mater Res A. 2005;72(2):213–9.

    PubMed  ADS  Google Scholar 

  27. Jin HJ, Chen J, Karageorgiou V, Altman GH, Kaplan DL. Human bone marrow stromal cell responses on electrospun silk fibroin mats. Biomaterials. 2004;25(6):1039–47.

    Article  CAS  PubMed  Google Scholar 

  28. Dhiman HK, Ray AR, Panda AK. Three-dimensional chitosan scaffold-based MCF-7 cell culture for the determination of the cytotoxicity of tamoxifen. Biomaterials. 2005;26(9):979–86.

    Article  CAS  PubMed  Google Scholar 

  29. Yeo JH, Lee KG, Lee YO, Kim SY. Simple preparation and characteristics of silk fibroin microsphere. Eur Polym J. 2003;29:1195–9.

    Article  Google Scholar 

  30. She Z, Jin C, Huang Z, Zhang B, Feng Q, Xu Y. Silk fibroin/chitosan scaffold: preparation, characterization, and culture with HepG2 cell. J Mater Sci Mater Med. 2008;19(12):3545–53.

    Article  CAS  PubMed  Google Scholar 

  31. Garside P, Lahlil S, Wyeth P. Characterization of historic silk by polarized attenuated total reflectance Fourier transform infrared spectroscopy. Appl Spectrosc. 2005;59(10):1242–7.

    Article  CAS  PubMed  ADS  Google Scholar 

  32. Chen X, Li WJ, Zhong W, Lu Y, Yu TY. pH sensitivity and ion sensitivity of hydrogels based on complex-forming chitosan/silk fibroin interpenetrating polymer network. J Appl Polym Sci. 1997;65:2257–62.

    Article  CAS  Google Scholar 

  33. Mosmann T. Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Methods. 1983;65(1–2):55–63.

    Article  CAS  PubMed  Google Scholar 

  34. Meinel L, Fajardo R, Hofmann S, Langer R, Chen J, Snyder B. Silk implants for the healing of critical size bone defects. Bone. 2005;37(5):688–98.

    Article  CAS  PubMed  Google Scholar 

  35. Marolt D, Augst A, Freed LE, Vepari C, Fajardo R, Patel N. Bone and cartilage tissue constructs grown using human bone marrow stromal cells, silk scaffolds and rotating bioreactors. Biomaterials. 2006;27(36):6138–49.

    Article  CAS  PubMed  Google Scholar 

  36. Hofmann S, Knecht S, Langer R, Kaplan DL, Vunjak-Novakovic G, Merkle HP. Cartilage-like tissue engineering using silk scaffolds and mesenchymal stem cells. Tissue Eng. 2006;12(10):2729–38.

    Article  CAS  PubMed  Google Scholar 

  37. Garcia-Fuentes M, Giger E, Meinel L, Merkle HP. The effect of hyaluronic acid on silk fibroin conformation. Biomaterials. 2008;29(6):633–42.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the National Science Council of the Republic of China, Taiwan, for financially supporting this research under Contract Nos; NSC-96-2321-B-002-043, NSC-97-2314-B-002-045 and NSC-96-2221-E-224-077-MY3.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tze-Wen Chung.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chung, TW., Chang, YL. Silk fibroin/chitosan–hyaluronic acid versus silk fibroin scaffolds for tissue engineering: promoting cell proliferations in vitro. J Mater Sci: Mater Med 21, 1343–1351 (2010). https://doi.org/10.1007/s10856-009-3876-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10856-009-3876-0

Keywords

Navigation