Skip to main content

Advertisement

Log in

Infection in fracture fixation: Can we influence infection rates through implant design?

  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

Musculoskeletal infection is one of the most common complications associated with surgical fixation of bones fractured during trauma. These infections usually involve bacterial colonisation and biofilm formation on the fracture fixation device itself, as well as infection of the surrounding tissues. Antibiotic prophylaxis, wound debridement and postsurgical care can reduce the incidence of, but do not prevent, these infections. Much research and development has been focussed on ways to further reduce the incidence of infection and in the following short review we describe our experiences investigating the contribution of the basic design of fracture fixation devices on the susceptibility to infection. It has been shown in animal studies that device size, shape, mode of action and material and topography play an interrelated role in the susceptibility to infection. Although direct extrapolation from animal studies to the clinical setting is difficult, close consideration of the design factors that can reduce the incidence of infection in animal models is expected to help minimise the incidence of infection associated with any clinically implemented fracture fixation device.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Gustilo RB, Gruninger RP, Davis T. Classification of type III [severe] open fractures relative to treatment and results. Orthopedics. 1987;10:1781–8.

    CAS  PubMed  Google Scholar 

  2. Gristina AG. Biomaterial-centered infection: microbial adhesion versus tissue integration. Science. 1987;237:1588–95.

    Article  CAS  PubMed  ADS  Google Scholar 

  3. Donlan RM. Biofilms: microbial life on surfaces. Emerg Infect Dis. 2002;8:881–90.

    PubMed  Google Scholar 

  4. Stewart PS, Costerton JW. Antibiotic resistance of bacteria in biofilms. Lancet. 2001;358:135–8.

    Article  CAS  PubMed  Google Scholar 

  5. Darouiche RO. Treatment of infections associated with surgical implants. N Engl J Med. 2004;350:1422–9.

    Article  CAS  PubMed  Google Scholar 

  6. Schmidmaier G, Lucke M, Wildemann B, Haas NP, Raschke M. Prophylaxis and treatment of implant-related infections by antibiotic-coated implants: a review. Injury. 2006;37(Suppl 2):S105–12.

    Article  PubMed  Google Scholar 

  7. Langlais F, Belot N, Ropars M, Thomazeau H, Lambotte JC, Cathelineau G. Antibiotic cements in articular prostheses: current orthopaedic concepts. Int J Antimicrob Agents. 2006;28:84–9.

    Article  CAS  PubMed  Google Scholar 

  8. Boxma H. Wound infections in fracture surgery. University of Amsterdam Thesis, 1995.

  9. McGraw JM, Lim EV. Treatment of open tibial-shaft fractures. External fixation and secondary intramedullary nailing. J Bone Joint Surg Am. 1988;70:900–11.

    CAS  PubMed  Google Scholar 

  10. Obremskey WT, Bhandari M, Dirschl DR, Shemitsch E. Internal fixation versus arthroplasty of comminuted fractures of the distal humerus. J Orthop Trauma. 2003;17:463–5.

    Article  PubMed  Google Scholar 

  11. Raahave D. Postoperative wound infection after implant and removal of osteosynthetic material. Acta Orthop Scand. 1976;47:28–35.

    Article  CAS  PubMed  Google Scholar 

  12. Boxma H, Broekhuizen T, Patka P, Oosting H. Randomised controlled trial of single-dose antibiotic prophylaxis in surgical treatment of closed fractures: the Dutch Trauma Trial. Lancet. 1996;347:1133–7.

    Article  CAS  PubMed  Google Scholar 

  13. Arens S, Schlegel U, Printzen G, Ziegler WJ, Perren SM, Hansis M. Influence of materials for fixation implants on local infection. An experimental study of steel versus titanium DCP in rabbits. J Bone Joint Surg Br. 1996;78:647–51.

    CAS  PubMed  Google Scholar 

  14. Arens S, Eijer H, Schlegel U, Printzen G, Perren SM, Hansis M. Influence of the design for fixation implants on local infection: experimental study of dynamic compression plates versus point contact fixators in rabbits. J Orthop Trauma. 1999;13:470–6.

    Article  CAS  PubMed  Google Scholar 

  15. Eijer H, Hauke C, Arens S, Printzen G, Schlegel U, Perren SM. PC-Fix and local infection resistance—influence of implant design on postoperative infection development, clinical and experimental results. Injury. 2001;32(Suppl 2):B38–43.

    Article  PubMed  Google Scholar 

  16. Hauke C, Schlegel U, Melcher GA, et al. Local infection in relation to different implant materials. An experimental study using stainless steel and titanium, unlocked, intramedullary nailsin rabbits. Orthop Trans. 1997;21:835–6.

    Google Scholar 

  17. Horn J, Schlegel U, Krettek C, Ito K. Infection resistance of unreamed solid, hollow slotted and cannulated intramedullary nails: an in-vivo experimental comparison. J Orthop Res. 2005;23:810–5.

    Article  CAS  PubMed  Google Scholar 

  18. Kalicke T, Schierholz J, Schlegel U, Frangen TM, Koller M, Printzen G, et al. Effect on infection resistance of a local antiseptic and antibiotic coating on osteosynthesis implants: an in vitro and in vivo study. J Orthop Res. 2006;24:1622–40.

    Article  PubMed  CAS  Google Scholar 

  19. Melcher GA, Claudi B, Schlegel U, Perren SM, Printzen G, Munzinger J. Influence of type of medullary nail on the development of local infection. An experimental study of solid and slotted nails in rabbits. J Bone Joint Surg Br. 1994;76:955–9.

    CAS  PubMed  Google Scholar 

  20. Melcher GA, Metzdorf A, Schlegel U, Ziegler WJ, Perren SM, Printzen G. Influence of reaming versus nonreaming in intramedullary nailing on local infection rate: experimental investigation in rabbits. J Trauma. 1995;39:1123–8.

    Article  CAS  PubMed  Google Scholar 

  21. Trampuz A, Zimmerli W. Diagnosis and treatment of infections associated with fracture-fixation devices. Injury. 2006;37(Suppl 2):S59–66.

    Article  PubMed  Google Scholar 

  22. Arciola CR, Baldassarri L, Von Eiff C, Campoccia D, Ravaioli S, Pirini V, et al. Prevalence of genes encoding for staphylococcal leukocidal toxins among clinical isolates of Staphylococcus aureus from implant orthopedic infections. Int J Artif Organs. 2007;30:792–7.

    CAS  PubMed  Google Scholar 

  23. Campoccia D, Baldassarri L, Pirini V, Ravaioli S, Montanaro L, Arciola CR. Molecular epidemiology of Staphylococcus aureus from implant orthopaedic infections: ribotypes, agr polymorphism, leukocidal toxins and antibiotic resistance. Biomaterials. 2008;29:4108–16.

    Article  CAS  PubMed  Google Scholar 

  24. Campoccia D, Montanaro L, Moriarty TF, Richards RG, Ravaioli S, Arciola CR. The selection of appropriate bacterial strains in preclinical evaluation of infection-resistant biomaterials. Int J Artif Organs. 2008;31:841–7.

    CAS  PubMed  Google Scholar 

  25. Perren SM. Backgrounds of the technology of internal fixators. Injury. 2003;34(Suppl 2):B1–3.

    Article  PubMed  Google Scholar 

  26. Hayes JS, Vos DI, Hahn J, Pearce SG, Richards RG. Effect of surface polishing of TAN intramedullary nails upon bone tissue adhesion and ease of nail removal—an in vivo study. 54th orthopaedic research society conference, San Francisco, USA, 2008, p. 33.

  27. Hayes JS, Archer CW, Richards RG. An in vitro evaluation for understanding the role of surface microtopography in controlling tissue integration. World biomaterials conference, 2008.

  28. Meredith DO, Eschbach L, Wood MA, Riehle MO, Curtis AS, Richards RG. Human fibroblast reactions to standard and electropolished titanium and Ti-6Al-7Nb, and electropolished stainless steel. J Biomed Mater Res A. 2005;75:541–55.

    PubMed  Google Scholar 

  29. Meredith DO, Eschbach L, Riehle MO, Curtis AS, Richards RG. Microtopography of metal surfaces influence fibroblast growth by modifying cell shape, cytoskeleton, and adhesion. J Orthop Res. 2007;25:1523–33.

    Article  CAS  PubMed  Google Scholar 

  30. Pearce AI, Pearce SG, Schweiger K, Milz S, Schneider E, Archer CW, et al. Effect of surface topography on removal of cortical bone screws in a novel sheep model. J Orthop Res. 2008;26:1377–83.

    Article  PubMed  Google Scholar 

  31. Welton JL. In vivo evaluation of defined polished surfaces to prevent soft tissue adhesion. Master thesis, University of Wales, Aberystwyth, 2006.

  32. Pieske O, Geleng P, Zaspel J, Piltz S. Titanium alloy pins versus stainless steel pins in external fixation at the wrist: a randomized prospective study. J Trauma. 2008;64:1275–80.

    Article  CAS  PubMed  Google Scholar 

  33. Soultanis KC, Pyrovolou N, Zahos KA, Karaliotas GI, Lenti A, Liveris I, et al. Late postoperative infection following spinal instrumentation: stainless steel versus titanium implants. J Surg Orthop Adv. 2008;17:193–9.

    PubMed  Google Scholar 

  34. Gristina AG. Implant failure and the immuno-incompetent fibro-inflammatory zone. Clin Orthop Relat Res. 1994; 106–118.

  35. Lowry KJ, Gainor BJ, Hoskins JS. Extensor tendon rupture secondary to the AO/ASIF titanium distal radius plate without associated plate failure: a case report. Am J Orthop. 2000;29:789–91.

    CAS  PubMed  Google Scholar 

  36. Sinicropi SM, Su BW, Raia FJ, Parisien M, Strauch RJ, Rosenwasser MP. The effects of implant composition on extensor tenosynovitis in a canine distal radius fracture model. J Hand Surg [Am]. 2005;30:300–7.

    Article  Google Scholar 

  37. Harris LG, Richards RG. Staphylococcus aureus adhesion to different treated titanium surfaces. J Mater Sci Mater Med. 2004;15:311–4.

    Article  CAS  PubMed  Google Scholar 

  38. Harris LG, Richards RG. Staphylococci and implant surfaces: a review. Injury. 2006;37(Suppl 2):S3–14.

    Article  PubMed  Google Scholar 

  39. Harris LG, Meredith DO, Eschbach L, Richards RG. Staphylococcus aureus adhesion to standard micro-rough and electropolished implant materials. J Mater Sci Mater Med. 2007;18:1151–6.

    Article  CAS  PubMed  Google Scholar 

  40. Hayes JS, Vos DI, Hahn J, Pearce SG, Richards RG. An in vivo evaluation of surface polishing of TAN intramedullary nails for ease of removal. Eur Cell Mater. 2009;18:15–26.

    CAS  PubMed  Google Scholar 

  41. Worlock P, Slack R, Harvey L, Mawhinney R. The prevention of infection in open fractures: an experimental study of the effect of fracture stability. Injury. 1994;25:31–8.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Geoff Richards.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Moriarty, T.F., Schlegel, U., Perren, S. et al. Infection in fracture fixation: Can we influence infection rates through implant design?. J Mater Sci: Mater Med 21, 1031–1035 (2010). https://doi.org/10.1007/s10856-009-3907-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10856-009-3907-x

Keywords

Navigation