Skip to main content

Advertisement

Log in

Physico-chemical and in vitro biological evaluation of strontium/calcium silicophosphate glass

  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

Strontium is known to reduce bone resorption and stimulate bone formation. Incorporation of strontium into calcium phosphate bioceramics has been widely reported. In this work, calcium and calcium/strontium silicophosphate glasses were synthesized from the sol–gel process and their rheological, thermal, and in vitro biological properties were studied and compared to each other. The results showed that the gel viscosity and thus the rate of gel formation increased by using strontium in glass composition and by increasing aging temperature. In strontium-containing glass, the crystallization temperature increased and the type of the crystallized phase was different to that of strontium-free glass. Both glasses favored precipitation of calcium phosphate layer when they were soaked in simulated body fluid; however strontium seemed to retard the rate of precipitation slightly. The in vitro biodegradation rate of the strontium/calcium silicophosphate glass was higher than that of strontium-free one. The cell culture experiments carried out using rat calvaria osteoblasts showed that the incorporation of strontium into the glass composition stimulated proliferation of the cells and enhanced their alkaline phosphatase activity, depending on cell culture period.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Torricelli P, Fini M, Giavaresi G, Giardino R. In vitro models to test orthopaedic biomaterials in view of their clinical application in osteoporotic bone. Int J Artif Organs. 2004;27:658–63.

    CAS  PubMed  Google Scholar 

  2. Moura J, Teixeira LN, Ravagnani C, Peitl O, Zanotto ED, Beloti MM, et al. In vitro osteogenesis on a highly bioactive glass-ceramic (Biosilicate). J Biomed Mater Res A. 2007;82:545–57.

    PubMed  Google Scholar 

  3. Saravanapavan P, Jones JR, Verrier S, Beilby R, Shirtliff VJ, Hench LL, et al. Binary CaO-SiO2 gel-glasses for biomedical applications. Biomed Mater Eng. 2004;14:467–86.

    PubMed  Google Scholar 

  4. Hench LL. The story of bioglass. J Mater Sci: Mater Med. 2006;17:967–78.

    Article  CAS  Google Scholar 

  5. Best SM, Porter AE, Thian ES, Huang G. Bioceramics: past, present and for the future. J Eur Ceram Soc. 2008;28:1319–27.

    Article  CAS  Google Scholar 

  6. Jaroch DB, Clupper DC. Modulation of zinc release from bioactive sol-gel derived SiO2-CaO-ZnO glasses and ceramics. J Biomed Mater Res A. 2007;82:575–88.

    CAS  PubMed  Google Scholar 

  7. Oki A, Parveen B, Hossain S, Adeniji S, Donahue H. Preparation and in vitro bioactivity of zinc containing sol-gel-derived bioglass materials. J Biomed Mater Res A. 2004;69:216–21.

    Article  PubMed  Google Scholar 

  8. Saboori A, Sheikhi M, Moztarzadeh F, Rabiee M, Hesaraki S, Tahriri M, et al. Sol–gel preparation, characterisation and in vitro bioactivity of Mg containing bioactive glass. Adv Apll Ceram. 2009;108:155–61.

    Article  CAS  Google Scholar 

  9. Balamurugan A, Rebelo AH, Lemos AF, Rocha JH, Ventura JM, Ferreira JM. Suitability evaluation of sol-gel derived Si-substituted hydroxyapatite for dental and maxillofacial applications through in vitro osteoblasts response. Dent Mater. 2008;24:1374–80.

    Article  CAS  PubMed  Google Scholar 

  10. Balamurugan A, Balossier G, Kannan S, Michel J, Rebelo AH, Ferreira JM. Development and in vitro characterization of sol-gel derived CaO-P2O5-SiO2-ZnO bioglass. Acta Biomater. 2007;3:255–62.

    Article  CAS  PubMed  Google Scholar 

  11. Chen YW, Shi GQ, Ding YL, Yu XX, Zhang XH, Zhao CS, et al. In vitro study on the influence of strontium-doped calcium polyphosphate on the angiogenesis-related behaviors of HUVECs. J Mater Sci Mater Med. 2008;19:2655–62.

    Article  CAS  PubMed  Google Scholar 

  12. Canalis E, Hott M, Deloffre P, Tsouderos Y, Marie PJ. The divalent strontium salt S12911 enhances bone cell replication and bone formation in vitro. Bone. 1996;18:517–23.

    Article  CAS  PubMed  Google Scholar 

  13. Buehler J, Chappuis P, Saffar JL, Tsouderos Y, Vignery A. Strontium ranelate inhibits bone resorption while maintaining bone formation in alveolar bone in monkeys. Bone. 2001;29:176–9.

    Article  CAS  PubMed  Google Scholar 

  14. Hott M, Deloffre P, Tsouderos Y, Marie PJ. S12911–2 reduces bone loss induced by short-term immobilization in rats. Bone. 2003;33:112–23.

    Article  Google Scholar 

  15. Meunier PJ, Roux C, Seeman E, Ortolani S, Badurski JE, Spector TD, et al. The effects of strontium ranelate on the risk of vertebral fracture in women with postmenopausal osteoporosis. N Engl J Med. 2004;350:459–568.

    Article  CAS  PubMed  Google Scholar 

  16. Seeman E, Devogelaer JP, Lorenc R, Spector T, Brixen K, Balogh A, et al. Strontium ranelate reduces the risk of vertebral fractures in patients with osteopenia. J Bone Miner Res. 2008;23:433–8.

    Article  CAS  PubMed  Google Scholar 

  17. Landi E, Tampieri A, Celotti G, Sprio S, Sandri M, Logroscino G. Sr-substituted hydroxyapatites for osteoporotic bone replacement. Acta Biomater. 2007;3:961–9.

    Article  CAS  PubMed  Google Scholar 

  18. Boyd D, Towler MR, Watts S, Hill RG, Wren AW, Clarkin OM. The role of Sr2+ on the structure and reactivity of SrO-CaO-ZnO-SiO2 ionomer glasses. J Mater Sci Mater Med. 2008;19:953–7.

    Article  CAS  PubMed  Google Scholar 

  19. Abou Neel EA, Chrzanowski W, Pickup DM, O’Dell LA, Mordan NJ, Newport RJ, et al. Structure and properties of strontium-doped phosphate-based glasses. J R Soc Interface. 2009;6:435–46.

    PubMed  Google Scholar 

  20. Towler M, Boyd D, Freeman C, Brook IM, Farthing P. Comparison of in vitro and in vivo bioactivity of SrO-CaO-ZnO-SiO2 glass grafts. J Biomater Appl. 2008 (in advance of print).

  21. Oréfice RL, Hench LL, Clark AE, Brennan AB. Novel sol-gel bioactive fibers. J Biomed Mater Res. 2001;15(55):460–7.

    Article  Google Scholar 

  22. Kokubo T, Kushitani H, Sakka S, Kitsugi T, Yamamuro TJ. Solutions able to reproduce in vivo surface-structure changes in bioactive glass-ceramic A-W. J Biomed Mater Res. 1990;24:721–34.

    Article  CAS  PubMed  Google Scholar 

  23. Neuhoff V, Stamm R, Eibl H. Clear background and highly sensitive protein staining with coomassie blue dyes in polyacrylamide gels: a systematic analysis. Electrophoresis. 1985;6:427–48.

    Article  CAS  Google Scholar 

  24. Qiu K, Zhao XJ, Wan CX, Zhao CS, Chen YW. Effect of strontium ions on the growth of ROS17/2.8 cells on porous calcium polyphosphate scaffolds. Biomaterials. 2006;27:1277–86.

    Article  CAS  PubMed  Google Scholar 

  25. Neuman W, Neuman M. The chemical dynamics of bone mineral. Chicago: University of Chicago Press; 1958.

    Google Scholar 

  26. Gamble J. Chemical anatomy, physiological and pathology of extracellular fluid. Cambridge, MA: Harvard University Press; 1967.

    Google Scholar 

  27. Saravanapavan P, Jones JR, Pryce RS, Hench LL. Bioactivity of gel-glass powders in the CaO-SiO2 system: a comparison with ternary (CaO-P2O5-SiO2) and quaternary glasses (SiO2-CaO-P2O5-Na2O). J Biomed Mater Res A. 2003;66:110–9.

    Article  PubMed  Google Scholar 

  28. Roy D. In vitro reactivity of Na2O-MgO-SiO2 glasses. J Phys Chem Solid. 2007;68:2321–5.

    Article  CAS  ADS  Google Scholar 

  29. Hesaraki S, Moztarzadeh F, Solati-Hashjin M. Phase evaluation of an effervescent-added apatitic calcium phosphate bone cement. J Biomed Mater Res B (Appl Biomater). 2006;79:203–9.

    Article  Google Scholar 

  30. Zhang K, Yan H, Bell DC, Stein A, Francis LF. Effects of materials parameters on mineralization and degradation of sol-gel bioactive glasses with 3D-ordered macroporous structures. J Biomed Mater Res A. 2003;66:860–9.

    Article  CAS  PubMed  Google Scholar 

  31. Xue W, Moore JL, Hosick HL, Bose S, Bandyopadhyay A, Lu WW, et al. Osteoprecursor cell response to strontium-containing hydroxyapatite ceramics. J Biomed Mater Res. 2006;79A:804–14.

    Article  CAS  Google Scholar 

  32. Gotoh Y, Hiraiwa K, Nagayama M. In vitro mineralization of osteoblastic cells derived from human bone. Bone Miner. 1990;8:239–50.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgment

The authors gratefully acknowledge Iran National Science Foundation (INSF) for financial support of this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Saeed Hesaraki.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hesaraki, S., Alizadeh, M., Nazarian, H. et al. Physico-chemical and in vitro biological evaluation of strontium/calcium silicophosphate glass. J Mater Sci: Mater Med 21, 695–705 (2010). https://doi.org/10.1007/s10856-009-3920-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10856-009-3920-0

Keywords

Navigation