Skip to main content

Advertisement

Log in

Corrosion behaviour of titanium after short-term exposure to an acidic environment containing fluoride ions

  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

The negative effect of fluoride ions on titanium has been known in dentistry for a long time. The presented work was aimed at the interaction between titanium and model saliva following a short-term exposure of a specimen to a model medical preparation rich in fluoride ions. The experimental work was carried out using titanium grade 2 in a physiological solution (pH non-adjusted, 5.8, 4.2; 5000 ppm F) and in model saliva. Electrochemical measurement techniques were supplemented with XPS analysis. The presence of fluoride ions resulted in partial degradation of the passive layer even in a slightly acidic environment. The decrease of pH to the value of 4.2 and the presence of 5000 ppm F caused titanium activation followed by a slow repassivation in model saliva. Formation of low soluble compound rich in fluorine explains experimental data. Short medical treatment can result in relatively long period of increased titanium corrosion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Jones DA. Principles of prevention of corrosion. Upper Saddle River: Prentice Hall; 1995.

    Google Scholar 

  2. Cohen F, Chemla M, Burdairon G. Corrosive properties of odontologic fluoride-containing gels against titanium. Comptes Rendus de l’Academie des Sciences, Serie II. 1991;313:501–8.

    CAS  Google Scholar 

  3. Boere G. Influence of fluoride on titanium in an acidic environment measured by polarization resistance technique. J Appl Biomat. 1995;6:283–8.

    Article  CAS  Google Scholar 

  4. Johansson BI, Bergman B. Corrosion of titanium and amalgam couples: effect of fluoride, area size, surface preparation and fabrication procedures. Dent Mater. 1995;11:41–6.

    Article  CAS  PubMed  Google Scholar 

  5. Kononen MH, Lavonius ET, Kivilahti JK. SEM observations on stress corrosion cracking of commercially pure titanium in a topical fluoride solution. Dent Mater. 1995;11:269–72.

    Article  CAS  PubMed  Google Scholar 

  6. Toumelin-Chemla F, Rouelle F, Burdairon G. Corrosive properties of fluoride-containing odontologic gels against titanium. J Dent. 1996;24:109–15.

    Article  CAS  PubMed  Google Scholar 

  7. Ozeki K, Oda Y, Sumii T. The influence of fluoride prophylactic agents on the corrosion of titanium and titanium alloys. Shika Gakuho. 1996;96:293–304.

    CAS  Google Scholar 

  8. Strietzel R, Hosch A, Kalbfleisch H, Buch D. In vitro corrosion of titanium. Biomaterials. 1998;19:1495–9.

    Article  CAS  PubMed  Google Scholar 

  9. Arys A, Philippart C, Dourov N, He Y, Le QT, Pireaux JJ. Analysis of titanium dental implants after failure of osseointegration: combined histological, electron microscopy, and x-ray photoelectron spectroscopy approach. J Biomed Mater Res. 1998;43:300–12.

    Article  CAS  PubMed  Google Scholar 

  10. Joska L, Venclikova Z, Poddana M, Benada O. The mechanism of gingiva metallic pigmentations formation. Clin Oral Invest. 2009;13:1–7.

    Article  Google Scholar 

  11. Nakagawa M, Matsuya S, Shiraishi T, Ohta M. Effect of fluoride concentration and pH on corrosion behavior of titanium for dental use. J Dent Res. 1999;78:1568–72.

    Article  CAS  PubMed  Google Scholar 

  12. Fovet Y, Gal JY, Toumelin-Chemla F. Influence of pH and fluoride concentration on titanium passivating layer: stability of titanium dioxide. Talanta. 2001;53:1053–63.

    Article  CAS  PubMed  Google Scholar 

  13. Titanoff N, Manwell MA, Zameck RN, Grosso JE. Clinical and microbiological effects of daily brushing with either NaF or SnF2 gels in subjects with fixed or removable dental prostheses. J Clin Periodontol. 1989;16:284–90.

    Article  Google Scholar 

  14. Lindholm-Sethson B, Ardlin BI. Effects of pH and fluoride concentration on the corrosion of titanium. J Biomed Mater Res A. 2008;86A:149–59.

    Article  CAS  Google Scholar 

  15. Stájer A, Ungvári K, Pels IK. Corrosive effects of fluoride on titanium: Investigation by X-ray photoelectron spectroscopy, atomic force microscopy, and human epithelial cell culturing. J Biomed Mater Res A. 2008;87A:450–8.

    Article  Google Scholar 

  16. Marek M. The effect of tin in the Ag-Hg phase of dental amalgam on dissolution of mercury. Dent Mater. 1997;13:353–9.

    Article  CAS  PubMed  Google Scholar 

  17. CRC. Handbook of chemistry and physics. 89th ed, electronic ed. London: Taylor and Francis. http://www.hbcpnetbase.com/ (2008). Accessed 4 Feb 2009.

  18. Orazem ME, Tribollet B. Electrochemical impedance spectroscopy. Hoboken: Wiley; 2008.

    Google Scholar 

  19. Barsoukov E, MacDonald R. Impedance spectroscopy: theory, experiment, and applications. 2nd ed. Hoboken: Wiley; 2005.

    Google Scholar 

  20. Cottis B, Turgoose S. Corrosion testing made easy: impedance and noise analysis. Houston: NACE; 1999.

    Google Scholar 

  21. NIST. X-ray photoelectron spectroscopy database. Version 4.0. Gaithersburg: NIST. http://srdata.nist.gov/xps2 (2008). Accessed 8 Feb 2009.

  22. James WJ, Johnson JW. Titanium, zirconium and hafnium. In: Bard AJ, Parsons R, Jordan J, editors. Standard potentials in aqueous solution. New York: Marcel Dekker; 1985. p. 539–47.

    Google Scholar 

  23. Pourbaix MJN. Atlas of electrochemical equilibriums in aqueous solutions. 2nd ed. Houston: NACE; 1974.

    Google Scholar 

  24. Al-Mayouf AM, Al-Swayih AA, Al-Mobarak NA. Effect of potential on the corrosion behavior of a new titanium alloy for dental implant applications in fluoride media. Mater Corros. 2004;55:88–94.

    Article  CAS  Google Scholar 

  25. Huang H-H. Effects of fluoride concentration and elastic tensile strain on the corrosion resistance of commercially pure titanium. Biomaterials. 2002;23:59–63.

    Article  CAS  PubMed  Google Scholar 

  26. Huang H-H. Effect of fluoride and albumin concentration on the corrosion behavior of Ti-6Al-4 V alloy. Biomaterials. 2003;24:275–82.

    Article  CAS  PubMed  ADS  Google Scholar 

  27. Mabilleau G, Bourdon S, Joly-Guillou ML, Filmon R, Basle MF, Chappard D. Influence of fluoride, hydrogen peroxide and lactic acid on the corrosion resistance of commercially pure titanium. Acta Biomater. 2006;2:121–9.

    Article  CAS  PubMed  Google Scholar 

  28. Takemoto S, Hattori M, Yoshinari M, Kawada E, Oda Y. Corrosion behavior and surface characterization of titanium in solution containing fluoride and albumin. Biomaterials. 2004;26:829–37.

    Article  Google Scholar 

Download references

Acknowledgements

This study was supported by the research programme MSM 6046137302 (Ministry of Education, Youth and Sports of the Czech Republic) and, in part, by a grant 106089003 from the ICT Prague to J. Fojt.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ludek Joska.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Joska, L., Fojt, J. Corrosion behaviour of titanium after short-term exposure to an acidic environment containing fluoride ions. J Mater Sci: Mater Med 21, 481–488 (2010). https://doi.org/10.1007/s10856-009-3930-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10856-009-3930-y

Keywords

Navigation