Skip to main content

Advertisement

Log in

Kinetic studies of a composite carbon nanotube-hydrogel for tissue engineering by rheological methods

  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

Here we used rheological methods to study the gelation kinetics of silanized hydroxypropylmethylcellulose (HPMC-Si) hydrogel for tissue engineering. Firstly, the gelation time was determined from the independence of tan δ on frequency, and the Arrhenius law was applied to obtain the apparent activation energy of gelation, which was found to be about 109.0 kJ/mol. Secondly, the gelation process was monitored by measuring the sample storage modulus. The results showed that the gelation process could be well classified as a second-order reaction. In addition, a composite HPMC-Si/MWNTs hydrogel system for potential cartilage tissue engineering was investigated. The comparison of pure HPMC-Si hydrogel and composite HPMC-Si/MWNTs systems indicated that the addition of MWNTs could increase the mechanical strength of hydrogel without changing the gelation mechanism of the system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Suh JKF, Matthew HWT. Application of chitosan-based polysaccharide biomaterials in cartilage tissue engineering: a review. Biomaterials. 2000;21:2589–98.

    Article  CAS  PubMed  Google Scholar 

  2. Nguyen KT, West JL. Photopolymerizable hydrogels for tissue engineering applications. Biomaterials. 2002;23:4307–14.

    Article  CAS  PubMed  Google Scholar 

  3. Brandl F, Sommer F, Goepferich A. Rational design of hydrogels for tissue engineering: impact of physical factors on cell behavior. Biomaterials. 2007;28:134–46.

    Article  CAS  PubMed  Google Scholar 

  4. Weiss P, Gauthier O, Bouler JM, Grimandi G, Daculsi G. Injectable bone substitute using a hydrophilic polymer. Bone. 1999;25(2 Suppl.):67S–70S.

    Article  CAS  PubMed  Google Scholar 

  5. Schmitt M, Weiss P, Bourges X, Valle GA, Daculsi G. Crystallization at the polymer/calcium-phosphate interface in a sterilized injectable bone substitute IBS. Biomaterials. 2002;23:2789–94.

    Article  CAS  PubMed  Google Scholar 

  6. Turczyn R, Weiss P, Lapkowski M, Daculsi G. In situ self hardening bioactive composite for bone and dental surgery. J Biomater Sci Polym Ed. 2000;2:217–23.

    Article  Google Scholar 

  7. Bourges X, Weiss P, Daculsi G, Legeay G. Synthesis and general properties of silated-hydroxypropyl methylcellulose in prospect of biomedical use. Adv Colloid Interface Sci. 2002;99:215–28.

    Article  CAS  PubMed  Google Scholar 

  8. Vinatier C, Magne D, Weiss P, Trojani C, Rochet N, Carle GF, et al. A silanized hydroxypropyl methylcellulose hydrogel for the three-dimensional culture of chondrocytes. Biomaterials. 2005;26:6643–51.

    Article  CAS  PubMed  Google Scholar 

  9. Merceron C, Vinatier C, Clouet J, Jouault SC, Weiss P, Guicheux J. Adipose-derived mesenchymal stem cells and biomaterials for cartilage tissue engineering. Joint Bone Spine. 2008;75:672–4.

    Article  PubMed  Google Scholar 

  10. Trojani C, Weiss P, Michiels JF, Vinatier C, Guicheux J, et al. Three-dimensional culture and differentiation of human osteogenic cells in an injectable hydroxypropylmethylcellulose hydrogel. Biomaterials. 2005;26:5509–17.

    Article  CAS  PubMed  Google Scholar 

  11. Trojani C, Boukhechba F, Scimeca JC, Vandenbos F, Michiels JF, et al. Ectopic bone formation using an injectable biphasic calcium phosphate/Si-HPMC hydrogel composite loaded with undifferentiated bone marrow stromal cells. Biomaterials. 2006;27:3256–64.

    Article  CAS  PubMed  Google Scholar 

  12. Harrison BS, Atala A. Carbon nanotube applications for tissue engineering. Biomaterials. 2007;28:344–53.

    Article  CAS  PubMed  Google Scholar 

  13. Wang SF, Shen L, Zhang WD, Tong YJ. Preparation and mechanical properties of chitosan/carbon nanotubes composites. Biomacromolecules. 2005;6:3067–72.

    Article  CAS  PubMed  Google Scholar 

  14. Bhattacharyya S, Guillot S, Dabboue H, Tranchant JF, Salvetat JP. Carbon nanotubes as structural nanofibers for hyaluronic acid hydrogel scaffolds. Biomacromolecules. 2008;9:505–9.

    Article  CAS  PubMed  Google Scholar 

  15. Wang Z, Chen Y. Supramolecular hydrogels hybridized with single-walled carbon nanotubes. Macromolecules. 2007;40:3402–7.

    Article  CAS  ADS  Google Scholar 

  16. Axelos MAV, Kolb M. Crosslinked biopolymers: experimental evidence for scalar percolation theory. Phys Rev Lett. 1990;64:1457–60.

    Article  CAS  PubMed  ADS  Google Scholar 

  17. Scanlan JC, Winter HH. Composition dependence of the viscoelasticity of end-linked poly(dimethylsiloxane) at the gel point. Macromolecules. 1991;24:47–54.

    Article  CAS  ADS  Google Scholar 

  18. Richtering HW, Gagnon KD, Lenz RW, Fuller RC, Winter HH. Physical gelation of a bacterial thermoplastic elastomer. Macromolecules. 1992;25:2429–33.

    Article  CAS  ADS  Google Scholar 

  19. Ponton A, Warlus S, Griesmar P. Rheological study of the sol-gel transition in silica alkoxides. J Colloid Interface Sci. 2002;249:209–16.

    Article  CAS  PubMed  Google Scholar 

  20. Ponton A, Doeuff SB, Sanchez C. Physico-chemical control of sol-gel transition of titanium alkoxide-based materials studied by rheology. J Non-cryst Solids. 2005;351:45–53.

    Article  CAS  ADS  Google Scholar 

  21. Kavanagh GM, Murphy SBR. Rheological characterisation of polymer gels. Prog Polym Sci. 1998;23:533–62.

    Article  CAS  Google Scholar 

  22. Misawa Y, Koumura N, Matsumoto H, Tamaoki N, Yoshida M. Hydrogels based on surfactant-free ionene polymers with N,N′-(p-phenylene)dibenzamide linkages. Macromolecules. 2008;41:8841–6.

    Article  CAS  ADS  Google Scholar 

  23. Böhm N, Kulicke WM. Rheological studies of barley (1 → 3)(1 → 4)-β-glucan in concentrated solution: mechanistic and kinetic investigation of the gel formation. Carbohydr Res. 1999;315:302–11.

    Article  Google Scholar 

  24. Madbouly SA, Otaigbe JU. Kinetic analysis of fractal gel formation in waterborne polyurethane dispersions undergoing high deformation flows. Macromolecules. 2006;39:4144–51.

    Article  CAS  ADS  Google Scholar 

  25. Zlatanic A, Dunjic B, Djonlagic J. Rheological study of the copolymerization reaction of acrylate-terminated unsaturated copolyesters with styrene. Macromol Chem Phys. 1999;200:2048–58.

    Article  CAS  Google Scholar 

Download references

Acknowledgment

This research was supported by the regional program BIOREGOS (Pays de la Loire, France).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pierre Weiss.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xie, F., Weiss, P., Chauvet, O. et al. Kinetic studies of a composite carbon nanotube-hydrogel for tissue engineering by rheological methods. J Mater Sci: Mater Med 21, 1163–1168 (2010). https://doi.org/10.1007/s10856-009-3984-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10856-009-3984-x

Keywords

Navigation