Skip to main content
Log in

Experimental and computational characterization of designed and fabricated 50:50 PLGA porous scaffolds for human trabecular bone applications

  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

The present study utilizes image-based computational methods and indirect solid freeform fabrication (SFF) technique to design and fabricate porous scaffolds, and then computationally estimates their elastic modulus and yield stress with experimental validation. 50:50 Poly (lactide-co-glycolide acid) (50:50 PLGA) porous scaffolds were designed using an image-based design technique, fabricated using indirect SFF technique, and characterized using micro-computed tomography (μ-CT) and mechanical testing. μ-CT data was further used to non-destructively predict the scaffold elastic moduli and yield stress using a voxel-based finite element (FE) method, a technique that could find application in eventual scaffold quality control. μ-CT data analysis confirmed that the fabricated scaffolds had controlled pore sizes, orthogonally interconnected pores and porosities which were identical to those of the designed files. Mechanical tests revealed that the compressive modulus and yield stresses were in the range of human trabecular bone. The results of FE analysis showed potential stress concentrations inside of the fabricated scaffold due to fabrication defects. Furthermore, the predicted moduli and yield stresses of the FE analysis showed strong correlations with those of the experiments. In the present study, we successfully fabricated scaffolds with designed architectures as well as predicted their mechanical properties in a nondestructive manner.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Karageorgiou V, Kaplan D. Porosity of 3D biomaterial scaffolds and osteogenesis. Biomaterials. 2005;26:5474–91.

    Article  CAS  PubMed  Google Scholar 

  2. Athanasiou KA, Agrawal CM, Barber FA, Burkhart SS. Orthopaedic applications for PLA-PGA biodegradable polymers. Arthroscopy. 1998;14:726–37.

    Article  CAS  PubMed  Google Scholar 

  3. Hutmacher DW. Scaffold design and fabrication technologies for engineering tissues–state of the art and future perspectives. J Biomater Sci Polym Ed. 2001;12:107–24.

    Article  CAS  PubMed  Google Scholar 

  4. Hollister SJ. Porous scaffold design for tissue engineering. Nat Mater. 2005;4:518–24.

    Article  CAS  PubMed  ADS  Google Scholar 

  5. Ma PX, Choi JW. Biodegradable polymer scaffolds with well-defined interconnected spherical pore network. Tissue Eng. 2001;7:23–33.

    Article  CAS  PubMed  Google Scholar 

  6. Murphy WL, Dennis RG, Kileny JL, Mooney DJ. Salt fusion: an approach to improve pore interconnectivity within tissue engineering scaffolds. Tissue Eng. 2002;8:43–52.

    Article  CAS  PubMed  Google Scholar 

  7. Guan L, Davies JE. Preparation and characterization of a highly macroporous biodegradable composite tissue engineering scaffold. J Biomed Mater Res A. 2004;71:480–7.

    Article  PubMed  Google Scholar 

  8. Huang YX, Ren J, Chen C, Ren TB, Zhou XY. Preparation and properties of poly(lactide-co-glycolide) (PLGA)/nano-hydroxyapatite (NHA) scaffolds by thermally induced phase separation and rabbit MSCs culture on scaffolds. J Biomater Appl. 2008;22:409–32.

    Article  CAS  PubMed  Google Scholar 

  9. Hu Y, Grainger DW, Winn SR, Hollinger JO. Fabrication of poly(alpha-hydroxy acid) foam scaffolds using multiple solvent systems. J Biomed Mater Res. 2002;59:563–72.

    Article  CAS  PubMed  Google Scholar 

  10. Nam YS, Park TG. Porous biodegradable polymeric scaffolds prepared by thermally induced phase separation. J Biomed Mater Res. 1999;47:8–17.

    Article  CAS  PubMed  Google Scholar 

  11. Thomson RC, Yaszemski MJ, Powers JM, Mikos AG. Fabrication of biodegradable polymer scaffolds to engineer trabecular bone. J Biomater Sci Polym Ed. 1995;7:23–38.

    Article  CAS  PubMed  Google Scholar 

  12. Wu L, Zhang H, Zhang J, Ding J. Fabrication of three-dimensional porous scaffolds of complicated shape for tissue engineering. I. Compression molding based on flexible-rigid combined mold. Tissue Eng. 2005;11:1105–14.

    Article  CAS  PubMed  Google Scholar 

  13. Harris LD, Kim BS, Mooney DJ. Open pore biodegradable matrices formed with gas foaming. J Biomed Mater Res. 1998;42:396–402.

    Article  CAS  PubMed  Google Scholar 

  14. Thomson RC, Yaszemski MJ, Powers JM, Mikos AG. Hydroxyapatite fiber reinforced poly(alpha-hydroxy ester) foams for bone regeneration. Biomaterials. 1998;19:1935–43.

    Article  CAS  PubMed  Google Scholar 

  15. Lu HH, El-Amin SF, Scott KD, Laurencin CT. Three-dimensional, bioactive, biodegradable, polymer-bioactive glass composite scaffolds with improved mechanical properties support collagen synthesis and mineralization of human osteoblast-like cells in vitro. J Biomed Mater Res A. 2003;64:465–74.

    Article  PubMed  Google Scholar 

  16. Rezwan K, Chen QZ, Blaker JJ, Boccaccini AR. Biodegradable and bioactive porous polymer/inorganic composite scaffolds for bone tissue engineering. Biomaterials. 2006;27:3413–31.

    Article  CAS  PubMed  Google Scholar 

  17. Karande TS, Ong JL, Agrawal CM. Diffusion in musculoskeletal tissue engineering scaffolds: design issues related to porosity, permeability, architecture, and nutrient mixing. Ann Biomed Eng. 2004;32:1728–43.

    Article  PubMed  Google Scholar 

  18. Lee KW, Wang S, Fox BC, Ritman EL, Yaszemski MJ, Lu L. Poly(propylene fumarate) bone tissue engineering scaffold fabrication using stereolithography: effects of resin formulations and laser parameters. Biomacromolecules. 2007;8:1077–84.

    Article  CAS  PubMed  Google Scholar 

  19. Hollister SJ, Lin CY, Saito E, Lin CY, Schek RD, Taboas JM, Williams JM, Partee B, Flanagan CL, Diggs A, Wilke EN, Van Lenthe GH, Muller R, Wirtz T, Das S, Feinberg SE, Krebsbach PH. Engineering craniofacial scaffolds. Orthod Craniofac Res. 2005;8:162–73.

    Article  CAS  PubMed  Google Scholar 

  20. Williams JM, Adewunmi A, Schek RM, Flanagan CL, Krebsbach PH, Feinberg SE, Hollister SJ, Das S. Bone tissue engineering using polycaprolactone scaffolds fabricated via selective laser sintering. Biomaterials. 2005;26:4817–27.

    Article  CAS  PubMed  Google Scholar 

  21. Hutmacher DW, Schantz T, Zein I, Ng KW, Teoh SH, Tan KC. Mechanical properties and cell cultural response of polycaprolactone scaffolds designed and fabricated via fused deposition modeling. J Biomed Mater Res. 2001;55:203–16.

    Article  CAS  PubMed  Google Scholar 

  22. Hsu SH, Yen HJ, Tseng CS, Cheng CS, Tsai CL. Evaluation of the growth of chondrocytes and osteoblasts seeded into precision scaffolds fabricated by fused deposition manufacturing. J Biomed Mater Res B Appl Biomater. 2007;80:519–27.

    PubMed  Google Scholar 

  23. Sherwood JK, Riley SL, Palazzolo R, Brown SC, Monkhouse DC, Coates M, Griffith LG, Landeen LK, Ratcliffe A. A three-dimensional osteochondral composite scaffold for articular cartilage repair. Biomaterials. 2002;23:4739–51.

    Article  CAS  PubMed  Google Scholar 

  24. Weigel T, Schinkel G, Lendlein A. Design and preparation of polymeric scaffolds for tissue engineering. Expert Rev Med Devices. 2006;3:835–51.

    Article  CAS  PubMed  Google Scholar 

  25. Taboas JM, Maddox RD, Krebsbach PH, Hollister SJ. Indirect solid free form fabrication of local and global porous, biomimetic and composite 3D polymer-ceramic scaffolds. Biomaterials. 2003;24:181–94.

    Article  CAS  PubMed  Google Scholar 

  26. Chen VJ, Smith LA, Ma PX. Bone regeneration on computer-designed nano-fibrous scaffolds. Biomaterials. 2006;27:3973–9.

    Article  CAS  PubMed  Google Scholar 

  27. Lee KW, Wang S, Lu L, Jabbari E, Currier BL, Yaszemski MJ. Fabrication and characterization of poly(propylene fumarate) scaffolds with controlled pore structures using 3-dimensional printing and injection molding. Tissue Eng. 2006;12:2801–11.

    Article  CAS  PubMed  Google Scholar 

  28. Liao E, Yaszemski M, Krebsbach P, Hollister S. Tissue-engineered cartilage constructs using composite hyaluronic acid/collagen I hydrogels and designed poly(propylene fumarate) scaffolds. Tissue Eng. 2007;13:537–50.

    Article  CAS  PubMed  Google Scholar 

  29. Roosa SM, Kemppainen JM, Moffitt EN, Krebsbach PH, Hollister SJ. The pore size of polycaprolactone scaffolds has limited influence on bone regeneration in an in vivo model. J Biomed Mater Res A. 2010;92:359–68.

    PubMed  Google Scholar 

  30. Lin CY, Schek RM, Mistry AS, Shi X, Mikos AG, Krebsbach PH, Hollister SJ. Functional bone engineering using ex vivo gene therapy and topology-optimized, biodegradable polymer composite scaffolds. Tissue Eng. 2005;11:1589–98.

    Article  CAS  PubMed  Google Scholar 

  31. Howk D, Chu TM. Design variables for mechanical properties of bone tissue scaffolds. Biomed Sci Instrum. 2006;42:278–83.

    PubMed  Google Scholar 

  32. Middleton JC, Tipton AJ. Synthetic biodegradable polymers as orthopedic devices. Biomaterials. 2000;21:2335–46.

    Article  CAS  PubMed  Google Scholar 

  33. Sosnowski S, Wozniak P, Lewandowska-Szumiel M. Polyester scaffolds with bimodal pore size distribution for tissue engineering. Macromol Biosci. 2006;6:425–34.

    Article  CAS  PubMed  Google Scholar 

  34. Wu L, Ding J. In vitro degradation of three-dimensional porous poly(d, l-lactide-co-glycolide) scaffolds for tissue engineering. Biomaterials. 2004;25:5821–30.

    Article  CAS  PubMed  Google Scholar 

  35. Kim SS, Sun Park M, Jeon O, Yong Choi C, Kim BS. Poly(lactide-co-glycolide)/hydroxyapatite composite scaffolds for bone tissue engineering. Biomaterials. 2006;27:1399–409.

    Article  CAS  PubMed  Google Scholar 

  36. Ma PX, Zhang R. Microtubular architecture of biodegradable polymer scaffolds. J Biomed Mater Res. 2001;56:469–77.

    Article  CAS  PubMed  Google Scholar 

  37. Wu L, Ding J. Effects of porosity and pore size on in vitro degradation of three-dimensional porous poly(d, l-lactide-co-glycolide) scaffolds for tissue engineering. J Biomed Mater Res A. 2005;75:767–77.

    PubMed  Google Scholar 

  38. Jiang T, Abdel-Fattah WI, Laurencin CT. In vitro evaluation of chitosan/poly(lactic acid-glycolic acid) sintered microsphere scaffolds for bone tissue engineering. Biomaterials. 2006;27:4894–903.

    Article  CAS  PubMed  Google Scholar 

  39. Sun W, Starly B, Darling A, Gomez C. Computer-aided tissue engineering: application to biomimetic modelling and design of tissue scaffolds. Biotechnol Appl Biochem. 2004;39:49–58.

    Article  CAS  PubMed  Google Scholar 

  40. Hollister SJ, Levy RA, Chu TM, Halloran JW, Feinberg SE. An image-based approach for designing and manufacturing craniofacial scaffolds. Int J Oral Maxillofac Surg. 2000;29:67–71.

    Article  CAS  PubMed  Google Scholar 

  41. Hollister SJ, Maddox RD, Taboas JM. Optimal design and fabrication of scaffolds to mimic tissue properties and satisfy biological constraints. Biomaterials. 2002;23:4095–103.

    Article  CAS  PubMed  Google Scholar 

  42. Lin CY, Kikuchi N, Hollister SJ. A novel method for biomaterial scaffold internal architecture design to match bone elastic properties with desired porosity. J Biomech. 2004;37:623–36.

    Article  PubMed  Google Scholar 

  43. Ho ST, Hutmacher DW. A comparison of micro CT with other techniques used in the characterization of scaffolds. Biomaterials. 2006;27:1362–76.

    Article  CAS  PubMed  Google Scholar 

  44. van Lenthe GH, Hagenmuller H, Bohner M, Hollister SJ, Meinel L, Muller R. Nondestructive micro-computed tomography for biological imaging and quantification of scaffold-bone interaction in vivo. Biomaterials. 2007;28:2479–90.

    Article  PubMed  Google Scholar 

  45. Charles-Harris M, del Valle S, Hentges E, Bleuet P, Lacroix D, Planell JA. Mechanical and structural characterisation of completely degradable polylactic acid/calcium phosphate glass scaffolds. Biomaterials. 2007;28:4429–38.

    Article  CAS  PubMed  Google Scholar 

  46. Lacroix D, Chateau A, Ginebra MP, Planell JA. Micro-finite element models of bone tissue-engineering scaffolds. Biomaterials. 2006;27:5326–34.

    Article  CAS  PubMed  Google Scholar 

  47. Duty AO, Oest ME, Guldberg RE. Cyclic mechanical compression increases mineralization of cell-seeded polymer scaffolds in vivo. J Biomech Eng. 2007;129:531–9.

    Article  PubMed  Google Scholar 

  48. Jaecques SV, Van Oosterwyck H, Muraru L, Van Cleynenbreugel T, De Smet E, Wevers M, Naert I, Vander Sloten J. Individualised, micro CT-based finite element modelling as a tool for biomechanical analysis related to tissue engineering of bone. Biomaterials. 2004;25:1683–96.

    Article  CAS  PubMed  Google Scholar 

  49. Chu TM, Halloran JW, Hollister SJ, Feinberg SE. Hydroxyapatite implants with designed internal architecture. J Mater Sci Mater Med. 2001;12:471–8.

    Article  CAS  PubMed  Google Scholar 

  50. Chu TM, Orton DG, Hollister SJ, Feinberg SE, Halloran JW. Mechanical and in vivo performance of hydroxyapatite implants with controlled architectures. Biomaterials. 2002;23:1283–93.

    Article  CAS  PubMed  Google Scholar 

  51. Turner CH, Burr DB. Basic biomechanical measurements of bone: a tutorial. Bone. 1993;14:595–608.

    Article  CAS  PubMed  Google Scholar 

  52. Athanasiou KA, Zhu C, Lanctot DR, Agrawal CM, Wang X. Fundamentals of biomechanics in tissue engineering of bone. Tissue Eng. 2000;6:361–81.

    Article  CAS  PubMed  Google Scholar 

  53. Hutmacher DW, Schantz JT, Lam CX, Tan KC, Lim TC. State of the art and future directions of scaffold-based bone engineering from a biomaterials perspective. J Tissue Eng Regen Med. 2007;1:245–60.

    Article  CAS  PubMed  Google Scholar 

  54. Kim JY, Jin GZ, Park IS, Kim JN, Chun SY, Park EK, Kim SY, Yoo J, Kim SH, Rhie JW, Cho DW. Evaluation of SFF-based scaffolds seeded with osteoblasts and HUVECs for use in vivo osteogenesis. Tissue Eng A. (in press).

  55. Mathieu LM, Mueller TL, Bourban PE, Pioletti DP, Muller R, Manson JA. Architecture and properties of anisotropic polymer composite scaffolds for bone tissue engineering. Biomaterials. 2006;27:905–16.

    Article  CAS  PubMed  Google Scholar 

  56. Alberich-Bayarri A, Moratal D, Ivirico JL, Rodriguez Hernandez JC, Valles-Lluch A, Marti-Bonmati L, Estelles JM, Mano JF, Pradas MM, Ribelles JL, Salmeron-Sanchez M. Microcomputed tomography and microfinite element modeling for evaluating polymer scaffolds architecture and their mechanical properties. J Biomed Mater Res B Appl Biomater. 2009;91:191–202.

    PubMed  Google Scholar 

  57. Diego RB, Estelles JM, Sanz JA, Garcia-Aznar JM, Sanchez MS. Polymer scaffolds with interconnected spherical pores and controlled architecture for tissue engineering: fabrication, mechanical properties, and finite element modeling. J Biomed Mater Res B Appl Biomater. 2007;81:448–55.

    PubMed  Google Scholar 

  58. Miranda P, Pajares A, Guiberteau F. Finite element modeling as a tool for predicting the fracture behavior of robocast scaffolds. Acta Biomater. 2008;4:1715–24.

    Article  CAS  PubMed  Google Scholar 

  59. Lengsfeld M, Schmitt J, Alter P, Kaminsky J, Leppek R. Comparison of geometry-based and CT voxel-based finite element modelling and experimental validation. Med Eng Phys. 1998;20:515–22.

    Article  CAS  PubMed  Google Scholar 

  60. Hollister SJ, Brennan JM, Kikuchi N. A homogenization sampling procedure for calculating trabecular bone effective stiffness and tissue level stress. J Biomech. 1994;27:433–44.

    Article  CAS  PubMed  Google Scholar 

  61. Guldberg RE, Hollister SJ, Charras GT. The accuracy of digital image-based finite element models. J Biomech Eng. 1998;120:289–95.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This study was supported by National Institute of Health (NIH) R01 grant AR 053379. We also would like to thank for Prof. John Halloran in Materials Science and Engineering for letting us to use their tube furnace and sintering oven.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Scott J. Hollister.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Saito, E., Kang, H., Taboas, J.M. et al. Experimental and computational characterization of designed and fabricated 50:50 PLGA porous scaffolds for human trabecular bone applications. J Mater Sci: Mater Med 21, 2371–2383 (2010). https://doi.org/10.1007/s10856-010-4091-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10856-010-4091-8

Keywords

Navigation