Skip to main content
Log in

Evaluation of alginate hydrogels under in vivo–like bioreactor conditions for cartilage tissue engineering

  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

Alginate hydrogels in forms of discs and packed beds of microbeads (~800 μm) were tested in a novel bioreactor at 10% strain using two regimes: at a loading rate of 337.5 μm/s and at sequential increments of 50 μm displacement every 30 min. Compressive strength increased with the increase in alginate concentration (1.5 vs. 2% w/w) and the content of guluronic residues (38.5 vs. 67%). Packed beds of microbeads exhibited significantly higher (~1.5–3.4 fold) compression moduli than the respective discs indicating the effects of gel form and entrapped water. Short-term cultivation of microbeads with immobilized bovine calf chondrocytes (1.5% w/w, 33 × 106 cells/ml) under biomimetic conditions (dynamic compression: 1 h on/1 h off, 0.42 Hz, 10% strain) resulted in cell proliferation and bed compaction, so that the compression modulus slightly increased. Thus, the novel bioreactor demonstrated advantages in evaluation of biomaterial properties and cell-biomaterial interactions under in vivo–like settings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Seal BL, Otero TC, Panitch A. Polimeric biomaterials for tissue and organ regeneration. Mater Sci Eng. 2001;34:147–230.

    Article  Google Scholar 

  2. Lakshmi SN, Cato TL. Biodegradable polymers as biomaterials. Prog Polym Sci. 2007;32:762–98.

    Article  Google Scholar 

  3. Bianco W, Grehan JF, Grubbs BC, Mracher JP, Schoeder EL, Schumacher CW, Svedsen CA, Lahti M. Large animal models in cardiac and vascular biomaterials research and testing. In: Dratner BD, Hoffman AS, Lemons JE, Schoen FJ, editors. Biomaterial science: an introduction to materials in medicine. New York: Academic press; 2004. p. 379–86.

    Google Scholar 

  4. Martinsen A, Skjak-Braek G, Smidsrod O. Alginate as immobilization material; I. Correlation between chemical and physical properties of alginate gel beads. Biotechnol Bioeng. 1989;33:79–89.

    Article  CAS  PubMed  Google Scholar 

  5. Drury JL, Dennis RG, Mooney DJ. The tensile properties of alginate hydrogels. Biomaterials. 2004;25:3187–99.

    Article  CAS  PubMed  Google Scholar 

  6. Melvik JE, Dornish M. Alginate as a carrier for cell immobilisation. In: Nedović V, Willaert RG, editors. Focus on biotechnology: fundamentals of cell immobilisation biotechnology. Dordrecht: Kluwer Academic Publishers; 2005. p. 33–53.

    Google Scholar 

  7. Augst AD, Kong HJ, Mooney DJ. Alginate hydrogels as biomaterials. Macromol Biosci. 2006;6:623–33.

    Article  CAS  PubMed  Google Scholar 

  8. Tıgh RS, Gumusderelioglu M. Evaluation of alginate-chitosan semi IPNs as cartilage scaffolds. J Mater Sci: Mater Med. 2009;20:699–709.

    Article  Google Scholar 

  9. Atala A, Kim W, Paige KT, Vacanti CA, Retik AB. Endoscopic treatment of vesicoureteral reflux with a chondrocyte-alginate suspension (discussion 644). J Urol. 1994;152:641–3.

    CAS  PubMed  Google Scholar 

  10. Marijnissen WJCM, van Osch GJVM, Aigner J, van der Veen SW, Hollander AP, Verwoerd-Verhoef HL, Verhaar JAN. Alginate as a chondrocyte-delivery substance in combination with a non-woven scaffold for cartilage tissue engineering. Biomaterials. 2002;23:1511–7.

    Article  CAS  PubMed  Google Scholar 

  11. Lum L, Elisseeff J. Injectable hydrogels for cartilage tissue engineering. In: Ashammakhi N, Ferretti P, editors. Topics in tissue engineering. Oulu: University of Oulu; 2003. p. 1–25.

    Google Scholar 

  12. Masuda K, Sah R, Hejna M, Thonar EJ-MA. A novel two–step method for the formation of tissue–engineered cartilage by mature bovine chondrocytes: the alginate–recovered–chondrocyte (ARC) method. J Orthop Res. 2003;21:139–48.

    Article  CAS  PubMed  Google Scholar 

  13. Sharma B, Elisseeff J. Engineering structurally organized cartilage and bone tissues. Ann Biomed Eng. 2004;32:148–59.

    Article  PubMed  Google Scholar 

  14. Xu X, Urbanz JPG, Tirlapury UK, Cui Z. Osmolarity effects on bovine articular chondrocytes during three-dimensional culture in alginate beads. Osteoarthr Cartil. 2010;18:433–9.

    Article  CAS  PubMed  Google Scholar 

  15. Weber M, Steinert A, Jork A, Dimmler A, Thurmer F, Schutze N, Hendrich C, Zimmermann U. Formation of cartilage matrix proteins by BMP-transfected murine mesenchymal stem cells encapsulated in a novel class of alginates. Biomaterials. 2002;23:2003–13.

    Article  CAS  PubMed  Google Scholar 

  16. Stevens MM, Qanadilo HF, Langer R, Shastri VP. A rapid-curing alginate gel system: utility in periosteum-derived cartilage tissue engineering. Biomaterials. 2004;25:887–94.

    Article  CAS  PubMed  Google Scholar 

  17. Orr DE, Burg KJL. Design of a modular bioreactor to incorporate both perfusion flow and hydrostatic compression for tissue engineering applications. Ann Biomed Eng. 2008;36:1228–41.

    Article  PubMed  Google Scholar 

  18. Osmokrovic A, Obradovic B, Bugarski D, Bugarski B, Vunjak-Novakovic G. Development of a packed bed bioreactor system aimed for cartilage tissue engineering. FME Trans. 2006;34:65–70.

    Google Scholar 

  19. Obradovic B, Osmokrovic A, Bugarski B, Bugarski D, Vunjak-Novakovic G. Alginate microbeads as cell support for cartilage tissue engineering: bioreactor studies. Mater Sci Forum: Prog Adv Mater Process. 2007;555:417–22.

    Article  CAS  Google Scholar 

  20. Freshney RI, Obradovic B, Grayson W, Cannizzaro C, Vunjak-Novakovic G. Principles of tissue culture and bioreactor design. In: Lanza RP, Langer R, Vacanti J, editors. Principles of tissue engineering. 3rd ed. New York: Elsevier, Inc.; 2007. p. 155–83.

    Google Scholar 

  21. Mauck RL, Soltz MA, Wang CCB, Wong DD, Chao PHG, Wilmot B, Valhmu WB, Hung CT, Ateshian GA. Functional tissue engineering of articular cartilage through dynamic loading of chondrocyte-seeded agarose gels. J Biomech Eng. 2000;122:252–60.

    Article  CAS  PubMed  Google Scholar 

  22. Demarteau O, Jakob M, Schafer D, Heberer M, Martin I. Development and validation of a bioreactor for physical stimulation of engineered cartilage. Biorheology. 2003;40:331–6.

    CAS  PubMed  Google Scholar 

  23. Seidel JO, Pei M, Gray ML, Langer R, Freed LE, Vunjak-Novakovic G. Long term culture of tissue engeneering cartilage in a perfused chamber with mechanical stimulation. Biorheology. 2004;41:445–58.

    CAS  PubMed  Google Scholar 

  24. Mauck RL, Byers BA, Yuan X, Tuan RS. Regulation of cartilaginous ECM gene transcription by chondrocytes and MSCS in three-dimensional culture in response to dynamic loading. Biomech Model Mechanobiol. 2007;6:113–25.

    Article  CAS  PubMed  Google Scholar 

  25. Mauck RL, Hung CT, Ateshian GA. Modeling of neutral solute transport in a dynamically loaded porous permeable gel: Implications for articular cartilage biosynthesis and tissue engineering. J Biomech Eng. 2003;125:602–14.

    Article  PubMed  Google Scholar 

  26. Petrovic M, Mitrakovic D, Bugarski B, Vonwil D, Martin I, Obradovic B. A novel bioreactor with mechanical stimulation for skeletal tissue engineering. CI&CEQ. 2009;15:41–4.

    Article  CAS  Google Scholar 

  27. Manojlovic V, Rajic N, Djonlagic J, Obradovic B, Nedovic V, Bugarski B. Application of electrostatic extrusion–flavour encapsulation and controlled release. Sensors. 2008;8:1488–96.

    Article  CAS  Google Scholar 

  28. Lawrie G, Keen I, Drew B, Chandler-Temple A, Rintoul L, Fredericks P, Grøndahl L. Interactions between alginate and chitosan biopolymers characterized using FTIR and XPS. Biomacromolecules. 2007;8:2533–41.

    Article  CAS  PubMed  Google Scholar 

  29. Nedović VA, Obradović B, Leskošek CI, Trifunović O, Pešić R, Bugarski B. Electrostatic generation of alginate microbeads loaded with brewing yeast. Process Biochem. 2001;37:17–22.

    Article  Google Scholar 

  30. Obradovic B, Bugarski D, Petakov M, Jovcic G, Stojanovic N, Bugarski B, Vunjak-Novakovic G. Cell support studies aimed for cartilage tissue engineering in perfused bioreactors. Mater Sci Forum. 2004;453–454:549–54.

    Article  Google Scholar 

  31. Barbero A, Ploegert S, Heberer M, Martin I. Plasticity of clonal populations of dedifferentiated adult human articular chondrocytes. Arthriris Rheu. 2003;48:1315–25.

    Article  CAS  Google Scholar 

  32. Freed LE, Marquis JC, Nohria A, Emmanual J, Mikos AG, Langer R. Neocartilage formation in vitro and in vivo using cells cultured on synthetic biodegradable polymers. J Biomed Mater Res. 1993;27:11–23.

    Article  CAS  PubMed  Google Scholar 

  33. Enobakhare BO, Bader DL, Lee DA. Quantification of sulfated glycosaminoglycans in chondrocyte/alginate cultures, by use of 1,9-dimethylmethylene blue. Anal Biochem. 1996;243:189–91.

    Article  CAS  PubMed  Google Scholar 

  34. Manojlovic V, Djonlagic J, Obradovic B, Nedovic V, Bugarski B. Investigation of cell immobilization in alginate: rheological and electrostatic extrusion studies. J Chem Technol Biotechol. 2006;81:505–10.

    Article  CAS  Google Scholar 

  35. Mancini M, Moresi M, Rancini R. Mechanical properties of alginate gels: empirical characterization. J Food Eng. 1999;39:369–78.

    Article  Google Scholar 

  36. Junter GA, Vinet F. Compressive properties of yeast cell-loaded Ca-alginate hydrogel layers: comparison with alginate–CaCO3 microparticle composite gel structures. Chem Eng J. 2009;145:514–21.

    Article  CAS  Google Scholar 

  37. LeRoux MA, Guilak F, Setton LA. Compressive and shear properties of alginate gel: effects of sodium ions and alginate concentration. J Biomed Mater Res. 1999;47:46–53.

    Article  CAS  PubMed  Google Scholar 

  38. Mauck RL, Nicoll SB, Seyhan SL, Ateshian GA, Hung CT. Synergistic action of growth factors and dynamic loading for articular cartilage tissue engineering. Tissue Eng. 2003;9:597–611.

    Article  CAS  PubMed  Google Scholar 

  39. Ahearne M, Yang Y, El Haj AJ, Then KY, Liu K-K. Characterizing the viscoelastic properties of thin hydrogel-based constructs for tissue engineering applications. J R Soc Interface. 2005;2:455–63.

    Article  CAS  PubMed  Google Scholar 

  40. Wang CX, Cowen C, Zhang Z, Thomas CR. High-speed compression of single alginate microspheres. Chem Eng Sci. 2005;60:6649–57.

    Article  CAS  Google Scholar 

  41. Nguyen VB, Wang CX, Thomas CR, Zhang Z. Mechanical properties of single alginate microspheres determined by microcompression and finite element modeling. Chem Eng Sci. 2009;64:821–9.

    Article  CAS  Google Scholar 

  42. Gilson CD, Thomas A, Hawkes FR. Gelling mechanism of alginate beads with and without immobilized yeast. Process Biochem. 1990;25:104–8.

    CAS  Google Scholar 

  43. Williams GM, Klein TJ, Sah RL. Cell density alters matrix accumulation in two distinct fractions and the mechanical integrity of alginate–chondrocyte constructs. Acta Biomater. 2005;1:625–33.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the Swiss National Science Foundation (SNSF, SCOPES grant IB73B0-111016/1) and the Ministry of Science and Technological Development of the Republic of Serbia (Grant 142075).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bojana Obradovic.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stojkovska, J., Bugarski, B. & Obradovic, B. Evaluation of alginate hydrogels under in vivo–like bioreactor conditions for cartilage tissue engineering. J Mater Sci: Mater Med 21, 2869–2879 (2010). https://doi.org/10.1007/s10856-010-4135-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10856-010-4135-0

Keywords

Navigation