Skip to main content

Advertisement

Log in

Low temperature fabrication of magnesium phosphate cement scaffolds by 3D powder printing

  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

Synthetic bone replacement materials are of great interest because they offer certain advantages compared with organic bone grafts. Biodegradability and preoperative manufacturing of patient specific implants are further desirable features in various clinical situations. Both can be realised by 3D powder printing. In this study, we introduce powder-printed magnesium ammonium phosphate (struvite) structures, accompanied by a neutral setting reaction by printing farringtonite (Mg3(PO4)2) powder with ammonium phosphate solution as binder. Suitable powders were obtained after sintering at 1100°C for 5 h following 20–40 min dry grinding in a ball mill. Depending on the post-treatment of the samples, compressive strengths were found to be in the range 2–7 MPa. Cytocompatibility was demonstrated in vitro using the human osteoblastic cell line MG63.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Geros RZ. Properties of osteoconductive biomaterials: calcium phosphates. Clin Orthop. 2002;39:81–98.

    Google Scholar 

  2. Rosen HM, Ackermann JL. Porous block hydroxyapatite in orthognatic surgery. Angle Orthod. 1991;61:185–91.

    CAS  PubMed  Google Scholar 

  3. Bohner M, Gbureck U, Barralet JE. Technological issues for the development of more efficient calcium phosphate bone cements: a critical assessment. Biomaterials. 2005;26:6423–9.

    Article  CAS  PubMed  Google Scholar 

  4. Dorozhkin SV. Calcium orthophosphate cements for biomedical applications. J Mater Sci. 2008;43:3028–57.

    Article  CAS  ADS  Google Scholar 

  5. Hollier LH, Stal S. The use of hydroxyapatite cements in craniofacial surgery. Clin Plast Surg. 2004;31:423–8.

    Article  PubMed  Google Scholar 

  6. Webb PA. A review of rapid prototyping (RP) techniques in the medical and biomedical sector. J Med Eng Technol. 2000;24:149–53.

    Article  CAS  PubMed  Google Scholar 

  7. Ashley S. Rapid prototyping for artificial body parts. Mech Eng (USA). 1993;115:50–3.

    Google Scholar 

  8. Peters F, Groisman D, Davids R, Hanel T, Durr H, Klein M. Comparative study of patient individual implants from beta-tricalcium phosphate made by different techniques based on CT data. Materialwissensch Werkstofftech. 2006;37:457.

    Article  CAS  Google Scholar 

  9. Ibrahim D, Broilo TL, Heitz C, de Oliveira MG, de Oliveira HW, Nobre SM, Dos Santos Filho JH, Silva DN. Dimensional error of selective laser sintering, three-dimensional printing and PolyJet models in the reproduction of mandibular anatomy. J Craniomaxillofac Surg. 2009;37:167–73.

    PubMed  Google Scholar 

  10. Silva DN, de Oliveira MG, Meurer E, Meurer MI, Lopes da Silva JV, Santa-Barbara A. Dimensional error in selective laser sintering and 3D-printing of models for craniomaxillary anatomy reconstruction. J Craniomaxillofac Surg. 2008;36:443–9.

    PubMed  Google Scholar 

  11. Gbureck U, Hölzel T, Klammert U, Würzler K, Müller FA, Barralet JE. Resorbable dicalcium phosphate bone substitutes prepared by 3D powder printing. Adv Funct Mater. 2007;17:3940–5.

    Article  CAS  Google Scholar 

  12. Vorndran E, Klarner M, Klammert U, Grover LM, Patel S, Barralet JE, Gbureck U. 3D powder printing of β-Tricalcium phosphate ceramics using different strategies. Adv Eng Mater. 2008;10:B67–71.

    Article  CAS  Google Scholar 

  13. Klammert U, Reuther T, Jahn C, Kraski B, Kübler AC, Gbureck U. Cytocompatibility of brushite and monetite cell culture scaffolds made by three-dimensional powder printing. Acta Biomater. 2009;5:727–34.

    Article  CAS  PubMed  Google Scholar 

  14. Gbureck U, Vorndran E, Müller FA, Barralet JE. Low temperature direct 3D printed bioceramics and biocomposites as drug release matrices. J Control Release. 2007;122:173–80.

    Article  CAS  PubMed  Google Scholar 

  15. Vorndran E, Klammert U, Ewald A, Barralet JE, Gbureck U. Simultaneous immobilization of bioactives during 3D powder printing of bioceramic drug-release matrices. Adv Funct Mater. 2010;20:1585–91.

    Article  CAS  Google Scholar 

  16. Driessens FCM, Boltong MG, Wenz R, Meyer J. Calcium phosphates as fillers in struvite cements. Key Eng Mater. 2005;284–286:161–4.

    Article  Google Scholar 

  17. Hall DA, Stevens R, El Jazairi B. Effect of water content on the structure and mechanical properties of magnesia-phosphate cement mortar. J Am Ceram Soc. 1998;81:1550–6.

    Article  CAS  Google Scholar 

  18. Hipedinger NE, Scian AN, Aglietti EF. Magnesia-ammonium phosphate-bonded cordierite refractory castables: phase evolution on heating and mechanical properties. Cem Concr Res. 2004;34:157–64.

    Article  CAS  Google Scholar 

  19. Sarkar AK. Hydration/dehydration characteristics of struvite and dittmarite pertaining to magnesium ammonium phosphate cement systems. J Mater Sci. 1991;26:2514–8.

    Article  CAS  ADS  Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge the financial support from the Deutsche Forschungsgemeinschaft (DFG Gb1/11-1, DFG Mu1803/7-1 and DFG Kl2400/1-2).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Uwe Klammert.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Klammert, U., Vorndran, E., Reuther, T. et al. Low temperature fabrication of magnesium phosphate cement scaffolds by 3D powder printing. J Mater Sci: Mater Med 21, 2947–2953 (2010). https://doi.org/10.1007/s10856-010-4148-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10856-010-4148-8

Keywords

Navigation