Skip to main content
Log in

Spherical N-carboxyethylchitosan/hydroxyapatite nanoparticles prepared by ionic diffusion process in a controlled manner

  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

The nanocomposites containing hydroxyapatite (HA) and biomacromolecules have attracted considerable research interest in implants, tissue scaffolds and drug controlled delivery. In this study, the N-carboxyethylchitosan/hydroxyapatite (NCECS/HA) nanoparticles were prepared by the ionic diffusion process in a controlled manner. The crystallization, particle size, size distribution and aggregation morphology of the NCECS/HA nanocomposites were dependent on the mole ratio of the glucosamine unit in NCECS to the Ca2+. Fourier transform-infrared spectroscopic (FTIR) result indicated that there are chemical bonds formed between NCECS and HA. X-ray diffraction (XRD) analysis showed that the crystallization of HA in NCECS matrix was significantly retarded. Transmission electron microscopy (TEM) results revealed that NCECS/HA nanocomposites have the spherical morphology with the diameter ranging from 10 to 40 nm. The NCECS mineralization is driven by the self-assembly of NCECS and HA. These NCECS/HA nanocomposites have potential applications as the carrier for the controlled delivery of growth factors and drugs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Scheme 2

Similar content being viewed by others

References

  1. Tao JH, Pan YW, Xu XR, Tang RK. Roles of amorphous calcium phosphate and biological additives in the assembly of hydroxyapatite nanoparticles. J Phys Chem B. 2007;111:13410–8.

    Article  CAS  PubMed  Google Scholar 

  2. Sabokbar A, Pandey R, Diaz J, Quinn JMW, Murray DW. Hydroxyapatite particles are capable of inducing osteoblast formation. J Mater Sci: Mater Med. 2001;12:659–64.

    Article  CAS  Google Scholar 

  3. Yuan H, Yang Z, Zhang X, De Bruijin JD, de Groot K. Osteoinduction by calcium phosphate biomaterials. J Mater Sci: Mater Med. 1998;9:723–6.

    Article  CAS  Google Scholar 

  4. Webster TJ, Siegel RW, Bizios R. Enhanced functions of osteoblasts on nanophase ceramics. Biomaterials. 2000;21:1803–10.

    Article  CAS  PubMed  Google Scholar 

  5. Elliot JC. Structure, chemistry of the apatites and other calcium orthophosphates, vol. 111. Amsterdam: Elsevier; 1994.

    Google Scholar 

  6. Miyamato Y, Shikawa KI. Basic properties of calcium phosphate cement containing atelocollagen in its liquid or powder phases. Biomaterials. 1998;19:707–15.

    Article  Google Scholar 

  7. Grodzinski JJ. Biomedical applications of functional polymers. React Fuct Polym. 1999;39:99–138.

    Article  Google Scholar 

  8. Burg KJL, Porter S, Kellam JF. Biomaterial developments for bone tissue engineering. Biomaterials. 2000;21:2347–59.

    Article  CAS  PubMed  Google Scholar 

  9. Hutmacher DW. Scaffold in tissue engineering bone and artilage. Biomaterials. 2000;21:2529–43.

    Article  CAS  PubMed  Google Scholar 

  10. Chang MC, Tanaka J. XPS study for the microstructure development of hydroxyapatite-collagen nanocomposites cross-linked using glutaraldehyde. Biomaterials. 2002;23(18):3879–85.

    Article  CAS  PubMed  Google Scholar 

  11. Lee JY, Nam SH, Im SY, Park YJ, Lee YM, Seol YJ, Chung CP, Lee SJ. Enhanced bone formation by controlled growth factor delivery from chitosan-based biomaterials. J Control Release. 2002;78(1–3):187–97.

    Article  CAS  PubMed  Google Scholar 

  12. Eugene K, Lee YL. Inplantable application of chitin and chitosan. Biomaterials. 2003;24:2339–49.

    Article  Google Scholar 

  13. Yamaguchi I, Tokuchi K, Fukuzaky H, Koyama Y, Takakuda K, Momna H, Tanaka J. Preparation and mechanical properties of chitosan/hydroxyapatite nanocomposites. Key Eng Mater. 2001;192–195:673–6.

    Article  Google Scholar 

  14. Yamaguchi I, Tokuchi K, Fukuzaky H, Koyama Y, Takakuda K, Momna H, Tanaka J. Preparation and microstructure analysis of chitosan/hydroxyapatite nanocomposites. J Biomed Mater Res. 2001;55:20–7.

    Article  CAS  PubMed  Google Scholar 

  15. Beppu MM, Santana CC. In vitro biomineralization of chitosan. Key Eng Mater. 2001;192–195:31–4.

    Article  Google Scholar 

  16. Hu Q, Li B, Wang M, Shen J. Preparation and characterization of biodegradable chitosan/hydroxyapatite nanocomposite rods via in situ hybridization: a potential material as internal fixation of bone frature. Biomaterials. 2004;25(5):779–85.

    Article  CAS  PubMed  Google Scholar 

  17. Rusu VM, Ng CH, Eilke M, Tiegitte B, Fratzl P, Peter MG. Size-controlled hydroxyapatite nanoparticles as self-organized organic-inorganic composite materials. Biomaterials. 2005;26:5414–26.

    Article  CAS  PubMed  Google Scholar 

  18. Ito M. In vitro properties of a chitosan-bonded hydroxyapatite bone filling past. Biomaterials. 1991;12:41–451.

    Article  CAS  PubMed  Google Scholar 

  19. Kawakami T, Antoh M, Hasegawa H, Yamaguchi I, Ito M, Eda S. Experimental study on osteoconductive properties of chitosan-bonded hydroxyapatite self-hardening paste. Biomaterials. 1992;13(11):759–63.

    Article  CAS  PubMed  Google Scholar 

  20. Wang XH, Ma JB, Wang YN, He BL. Bone repair in radii and tabias of rabbits with phosphorylated chitosan reinforced calcium phosphate cements. Biomaterials. 2002;23:4167–76.

    Article  CAS  PubMed  Google Scholar 

  21. Zhang Y, Zhang MO. Synthesis and characterization of macroporous chitosan/calcium phosphate composite scaffolds for tissue engineering. J Biomed Mater Res. 2001;55(3):304–12.

    Article  CAS  ADS  PubMed  Google Scholar 

  22. Zhang Y, Zhang MQ. Calcium phosphate/chitosan composite scaffolds for controlled in vitro antibiotic drug release. J Biomed Mater Res. 2002;62(3):378–86.

    Article  CAS  PubMed  Google Scholar 

  23. Muzzarelli C, Muzzarelli RAA. Natural and artificial chitosan-inorganic composites. J Inorg Biochem. 2002;92:89–94.

    Article  CAS  PubMed  Google Scholar 

  24. Pan YN, Luo XD, Zhu AP, Dai S. Synthesis and physicochemical properties of biocompatible N-carboxyethylchitosan. J Biomater Sci Polym Ed. 2009;20:981–92.

    Article  CAS  PubMed  Google Scholar 

  25. Murugan R, Ramakrishna S. Bioresorbable composite bone paste using polysaccharide based nano hydroxyapatite. Biomaterials. 2004;25:3829–35.

    Article  CAS  PubMed  Google Scholar 

  26. Rhee SH, Tanaka J. Self-assembly phenomenon of hydroxyapatite nanocrystals on chondroitin sulfate. J Mater Sci: Mater Med. 2002;13:597–600.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research was supported by a National Natural Science Foundation of China (No. 51073133), a Natural & Scientific Grant of Jiangsu Province, Project No. BK2006072 (China), and a Project No. 08KJA430003 (China).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aiping Zhu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhu, A., Lu, Y., Zhou, Y. et al. Spherical N-carboxyethylchitosan/hydroxyapatite nanoparticles prepared by ionic diffusion process in a controlled manner. J Mater Sci: Mater Med 21, 3095–3101 (2010). https://doi.org/10.1007/s10856-010-4157-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10856-010-4157-7

Keywords

Navigation