Skip to main content
Log in

Evaluating cell proliferation based on internal pore size and 3D scaffold architecture fabricated using solid freeform fabrication technology

  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

The scaffold, as a medical component to regenerate tissues or organs in humans, plays an important role in tissue engineering. Recently, solid freeform fabrication (SFF) technology using computer-assisted methods was applied to address the problems of conventional fabrication methods in which the internal/outer architectures cannot be controlled. In this report, we propose suitable scaffolds for bone tissue regeneration considering the internal pore size and scaffold architecture. Poly(propylene fumarate) was used as the biodegradable photopolymer, and scaffolds were fabricated using microstereolithography (MSTL). We observed the relationship between the internal pores and architecture, and the proliferation of pre-osteoblast cells. To demonstrate the superiority of MSTL, we fabricated conventional and SFF scaffolds, and measured the cell proliferation rates for each. The results showed that cell proliferation on the MSTL scaffold was clearly superior and indicated that MSTL would be a good replacement for current conventional methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Thomson R, Yaszemski M, Mikos AG. Polymer scaffold processing. In: Lanza R, Langer R, Chick W, editors. Principles of tissue engineering. Austin: R.G. Landes Co. Academic Press;1997. p. 263–72.

  2. Rezwana K, Chena QZ, Blakera JJ, Boccaccini AR. Biodegradable and bioactive porous polymer/inorganic composite scaffolds for bone tissue engineering. Biomaterials. 2006;27:3413–31.

    Article  Google Scholar 

  3. Fisher JP, Dean D, Mikos AG. Photocrosslinking characteristics and mechanical properties of diethyl fumarate/poly (propylene fumarate) biomaterials. Biomaterials. 2002;23:4333–43.

    Article  CAS  PubMed  Google Scholar 

  4. Temenhoff JS, Mikos AG. Injectable materials for orthopaedic tissue engineering. Biomaterials. 2000;21:2405–12.

    Article  Google Scholar 

  5. He S, Yaszemski M, Wasko A, Engel P, Mikos A. Injectable biodegradable polymer composites based on poly(propylene fumarate) crosslinked with poly(ethylene glycol)-dimethacrylate. Biomaterials. 2000;20:2389–94.

    Article  Google Scholar 

  6. Domb AJ, Kost J, Wiseman DM. Handbook of biodegradable polymers. London: Harwood Academic Publishers; 1997.

    Google Scholar 

  7. Frazier DD, Lathi VK, Gerhart TN, Hayes WC. Ex vivo degradation of a poly (propylene glycol-fumarate) biodegradable particulate composite bone cement. J Biomed Mater Res. 1997;34(3):383–9.

    Article  Google Scholar 

  8. Cooke MN, Fisher JP, Dean D, Rimnac C, Mikos AG. Use of stereolithography to manufacture critical-sized 3D biodegradable scaffolds for bone ingrowth. J Biomed Mater Res Part B. 2002;64B:65–9.

    Article  Google Scholar 

  9. Lee JW, Lan PX, Kim B, Lim GB, Cho D-W. Fabrication and Characteristic Analysis of a Poly(propylene fumarate) Scaffold Using Micro-stereolithography Technology. J Biomed Mater Res Part B. 2008;87B:1–9.

    Article  CAS  Google Scholar 

  10. Lan PX, Lee JW, Seol Y-J, Cho D-W. Development of 3D PPF/DEF scaffolds using micro-stereolithography and surface modification. J Mater Sci Mater Med. 2009;20(1):271–9.

    Article  CAS  PubMed  Google Scholar 

  11. Oh SH, Kang SG, Kim ES, Cho SH, Lee JH. Fabrication and characterization of hydrophilic poly(lactic-co-glycolic acid)/poly(vinyl alcohol) blend cell scaffolds by melt-molding particulate-leaching method. Biomaterials. 2003;24:4011–21.

    Article  CAS  PubMed  Google Scholar 

  12. He L, Zhang Y, Zeng X, Quan D, Liao S, Zeng Y, Lu J, Ramakrishnam S. Fabrication and characterization of poly(l-lactic acid) 3D nanofibrous scaffolds with controlled architecture by liquid–liquid phase separation from a ternary polymer–solvent system. Polymer. 2009;50:4128–38.

    Article  CAS  Google Scholar 

  13. Wu H, Wan Y, Cao X, Dalai S, Wang S, Zhang S. Fabrication of chitosan-g-polycaprolactone copolymer scaffolds with gradient porous microstructures. Mater Lett. 2008;62:2733–6.

    Article  CAS  Google Scholar 

  14. Kim S-S, Park MS, Jeon O, Choi CY, Kim B-S. Fabrication and characterization of hydrophilic poly(lactic-co-glycolic acid)/poly(vinyl alcohol) blend cell scaffolds by melt-molding particulate-leaching method. Biomaterials. 2006;27:1399–409.

    Article  CAS  PubMed  Google Scholar 

  15. O’Brien FJ, Harley BA, Yannas IV, Gibson L. Influence of freezing rate on pore structure in freeze-dried collagen-GAG scaffolds. Biomaterials. 2004;25:1077–86.

    Article  PubMed  Google Scholar 

  16. Reignier J, Huneault MA. Preparation of interconnected poly(ε-caprolactone) porous scaffolds by a combination of polymer and salt particulate leaching. Polymer. 2006;47:4703–17.

    Article  CAS  Google Scholar 

  17. Rowlands AS, Lim SA, Martin D, Cooper-White JJ. Polyurethane/poly(lactic-co-glycolic) acid composite scaffolds fabricated by thermally induced phase separation. Biomaterials. 2007;28:2109–21.

    Article  CAS  PubMed  Google Scholar 

  18. Lee SB, Kim YH, Chong MS, Hong SH, Lee YM. Study of gelatin-containing artificial skin V: fabrication of gelatin scaffolds using a salt-leaching method. Biomaterials. 2005;26:1961–8.

    Article  CAS  PubMed  Google Scholar 

  19. Zein I, Hutmacher DW, Tan KC, Teoh SH. Fused deposition modeling of novel scaffold architectures for tissue engineering applications. Biomaterials. 2002;23:1169–85.

    Article  CAS  PubMed  Google Scholar 

  20. Dutt RT, Simon JL, Ricci JL, Rekow ED, Thompson VP, Parsons JR. Performance of hydroxyapatite bone repair scaffolds created via three-dimensional fabrication techniques. J Biomed Mater Res Part A. 2003;67:1228–37.

    Article  Google Scholar 

  21. Chu WS, Jeong SY, Pandey JK, Ahn SH, Lee JH, Chi SC. Fabrication of composite drug delivery system using nano composite deposition system and in vivo characterization. IJPEM. 2008;9(2):81–3.

    Google Scholar 

  22. Roy TD, Simon JL, Ricci JL, Rekow ED, Thompson VP, Parsons JR. Performance of degradable composite bone repair products made via three-dimensional fabrication techniques. J Biomed Mater Res Part A. 2003;66:283–91.

    Article  Google Scholar 

  23. Simon JL, Roy TD, Parsons JR, Rekow ED, Thompson VP, Kemnitzer J, Ricci JL. Engineered cellular response to scaffold architecture in a rabbit trephine defect. J Biomed Mater Res Part A. 2003;66:275–82.

    Article  Google Scholar 

  24. Chu TM, Orton DG, Hollister SJ, Feinberg SE, Halloran JW. Mechanical and in vivo performance of hydroxyapatite implants with controlled architectures. Biomaterials. 2002;23:1283–93.

    Article  CAS  PubMed  Google Scholar 

  25. Ha Y-M, Park I-B, Kim H-C, Lee S-H. Three-dimensional microstructure using partitioned cross-sections in projection microstereolithography. IJPEM. 2010;11(2):335–40.

    Google Scholar 

  26. Kwon IK, Matsuda T. Photo-polymerized microarchitectureal constructs prepared by microstereolithography using liquid acrylated-end-capped trimethylene carbonate-based prepolymers. Biomaterials. 2005;26:1675–84.

    Article  CAS  PubMed  Google Scholar 

  27. Lee JW, Ahn GS, Kim DS, Cho D-W. Development of nano- and microscale composite 3D scaffolds using PPF/DEF-HA and micro-stereolithography. Microelectron Eng. 2009;86:1465–7.

    Article  CAS  Google Scholar 

  28. Khang G, Kim MS, Lee HB. A manual for biomaterial/scaffold fabrication technology. Singapore: World Scientific Publishing; 2007. p. 35–41.

    Google Scholar 

  29. Dennis JE, Haynesworth SE, Young RG, Caplan AI. Osteogenesis in marrow derived mesenchymal cell porous ceramic composites transplanted subcutaneously: effect of fibronectin and laminin on cell retention and rate of osteogenic expression. Cell Transpl. 1992;1:23–32.

    CAS  Google Scholar 

  30. Schwartz Z, Mellonig JT, Carnes DR Jr, De La Fontaine J, Cochran DL, Dean DD, Boyan BD. Ability of commercial demineralized freeze-dried bone allograft to induce new bone formation. J Periodontol. 1996;67:918–26.

    CAS  PubMed  Google Scholar 

  31. Vassilis K, Kaplan D. Porosity of 3D biomaterial scaffolds and osteogenesis. Biomaterials. 2005;26:5474–91.

    Article  Google Scholar 

  32. Hutmacher DW. Scaffolds in tissue engineering bone and cartilage. Biomaterials. 2000;21:2529–43.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MEST) (No. 2010-0018294 & NRF-2009-352-D00024) and WCU (World Class University) program through the Korea Science and Engineering Foundation funded by the Ministry of Education, Science and Technology (R31-2008-000-10105-0).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dong-Woo Cho.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lee, J.W., Ahn, G., Kim, J.Y. et al. Evaluating cell proliferation based on internal pore size and 3D scaffold architecture fabricated using solid freeform fabrication technology. J Mater Sci: Mater Med 21, 3195–3205 (2010). https://doi.org/10.1007/s10856-010-4173-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10856-010-4173-7

Keywords

Navigation