Skip to main content

Advertisement

Log in

Influence of calcinated and non calcinated nanobioglass particles on hardness and bioactivity of sol–gel-derived TiO2–SiO2 nano composite coatings on stainless steel substrates

  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

Thick films of calcinated and non calcinated nanobioglass (NBG)-titania composite coatings were prepared on stainless steel substrates by alkoxide sol–gel process. Dip-coating method was used for the films preparation. The morphology, structure and composition of the nano composite films were evaluated using environmental scanning electron microscope, X-ray diffraction and Fourier transform infrared spectroscope. The SEM investigation results showed that prepared thick NBG-titania films are smooth and free of macrocracking, fracture or flaking. The grain size of these films was uniform and nano scale (50–60 nm) which confirmed with TEM. Also FTIR confirmed the presence of Si–O–Si bands on the calcinated NBG-titania films. The hardness of the prepared films (TiO2-calcinated NBG and TiO2-Non calcinated NBG) was compared by using micro hardness test method. The results verified that the presence of calcinated NBG particles in NBG-titania composite enhanced gradually the mechanical data of the prepared films. The in vitro bioactivity of these films was discussed based on the analysis of the variations of Ca and P concentrations in the simulated body fluid (SBF) and their surface morphologies against immersion time. Surface morphology and Si–O–Si bands were found to be of great importance with respect to the bioactivity of the studied films. The results showed that calcinated NBG-titania films have better bioactivity than non calcinated NBG-titania films.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Hench LL, Spinter RJ, Allen WC, Greenlee TK Jr. Bonding mechanisms at the interface of ceramic prosthetic materials. J Biomed Mater Res. 1971;2(1):117–41.

    Article  Google Scholar 

  2. Hench LL. Bioceramics: from concept to clinic. J Am Ceram Soc. 1991;74(1):1487–510.

    Article  CAS  Google Scholar 

  3. Williams DF. The biocompatibility and clinical uses of calcium phosphate ceramics. In: Williams DF, editor. Biocompatibility of tissue analogs, vol. 2. Boca Raton: CRC Press; 1985. p. 43–66.

    Google Scholar 

  4. Hulbert SF, Bokros JC, Hench LL, Wilson J, Heimke G. In: Vincenzini P, editor. Ceramics in clinical applications: past, present and future in high tech ceramics. Amsterdam: Elsevier; 1987. p. 189–213.

    Google Scholar 

  5. Le Geros RZ. Calcium phosphate materials in restorative dentistry: a review. Adv Dent Res. 1988;2:164–80.

    Google Scholar 

  6. Yamamuro T, Shikata J, Okumura H, Nakamura T, Yoshii S, Ono K, Kitsugi T. Clinical application of bioactive ceramics in bioceramics. Kitsugi Ishiyaku EuroAmerica, Tokio. 1989;1:175–80.

    Google Scholar 

  7. Cook SD, Thomas KA. Hydroxya apatite-coated metal for orthopaedic and dental implant applications. Abstracts of the 92nd Annual Meeting and Exposition. The American Ceramic Society, Inc., Dallas, TX. 1990.

  8. Yamamuro T, Shikata J, Okumura H, Yoshii S, Konati S, Kokubo T, Heimke G. Pre-clinical and clinical applications of A/W glass–ceramic to various orthopaedic conditions in bioceramics, vol. 2. Cologne: German Ceramic Society; 1990. p. 361–6.

    Google Scholar 

  9. De Groot K. Medical applications of calcium phosphate bioceramics. Centennia l Mem Issue. 1991;0.99(10):943–53.

    Google Scholar 

  10. Hench LL, Wilson JW. Surface-active biomaterials. Science. 1984;226:630–6.

    Article  CAS  Google Scholar 

  11. Hench LL. Bioactive glasses and glass–ceramics: a perspective. In: Yamamuro T, Hench LL, Wilson J, editors. Handbook of bioactive ceramics, vol. 1. Boca Raton: CRC Press; 1990. p. 7–23.

    Google Scholar 

  12. Ishizawa H, Fujino M, Ogino M. Surface reactions of calcium phosphate ceramics and glass–ceramics to various physiological solutions. In: Yamamuro T, Hench LL, Wilson J, editors. Handbook of bioactive ceramics, vol. 1. Boca Raton: CRC Press; 1990. p. 115–23.

    Google Scholar 

  13. Ohtsuki C, Aoki Y, Kokubo T, Bando Y, Neo M, Yamamuro T, Nakamura T. Characterization of apatite layer formed on bioactive glass–ceramic A–W. Bioceramics. 1992;5:79–83.

    Google Scholar 

  14. Ohtsuki C, Aoki Y, Kokubo T, Bando Y, Neo M, Yamamuro T, Yacamura T. Characterization of apatite layer formed on bioactive glass–ceramic A–W. Bioceramics. 1992;5:87–94.

    Google Scholar 

  15. Ohtsuki C, Kokubo T, Yamamuro T. Mechanism of apatite formation on CaO–SiO2–P2O5 glasses in simulated body fluid. J Non-Cryst Solids. 1992;143:84–92.

    Article  CAS  Google Scholar 

  16. Walker M. An Investigation into the bonding mechanism of bioglass, Doctoral Tesis, Universidad de Florida, 1977.

  17. Kokubo T, Hayashi T, Sakka S, Kitsugi T, Yamamuro T. Bonding between bioactive glass, glass–ceramic or ceramics in simulated body fluid. Yogyo-Ky okai-shi. 1987;0.95(8):785–91.

    Google Scholar 

  18. Ebisawa T, Kokubo T, Ohura K, Yamamuro T. Bioactivity of CaO2·SiO2-based glasses: in vitro evaluation. J Mater Sci Mater Med. 1990;1:239–44.

    Article  CAS  Google Scholar 

  19. Boyde A, Manconnachie E, Muller-Mai C. Gross U.SEM study of surface alterations of bioactive glass and glass-ceramics in bony implantation bed. Clin Mater. 1990;5:73–88.

    Article  CAS  Google Scholar 

  20. De Aza PN, Guitian F, Merlos A, Lora-Tamayo E, De Aza S. Bioceramics-simulated body fluid interfaces: pH and its influence on hydroxyapatite formation. J Mater Sci Mater Med. 1996;7:399–402.

    Article  Google Scholar 

  21. Sepulveda P, Jones JR, Hench LL. Bioactive sol–gel foams for tissue repair. J Biomed Mater Res. 2002;59:340–8.

    Article  CAS  Google Scholar 

  22. Yuron C, Lian Z. Effect of thermal treatment on the microstructure and mechanical properties of gel-derived bioglasses. J Mater Chem Phys. 2005;94:283–7.

    Article  Google Scholar 

  23. Li J, Sun Y, Sun X, Qiao J. Mechanical and corrosion-resistance performance of electrodeposited titania–nickel nanocomposite coatings. J Surf Coat Technol. 2005;192:331–5.

    Article  CAS  Google Scholar 

  24. Li P, Kangasniemi I, De Groot K. In vitro and in vivo evaluation of bioactivity of gel titania. Bioceramics. 1993;6:41–5.

    CAS  Google Scholar 

  25. Haddow DB, James PF, Van Noort R. Characterisation of sol–gel surfaces for biomedical applications. J Mater Sci: Mater Med. 1996;7:255–60.

    Article  CAS  Google Scholar 

  26. Haddow DB, Kothari S, James PF, Short RD, Hatton PV, Van Noort R. Synthetic implant surfaces. 1. The formation and characterisation of sol–gel titania films. Biomaterials. 1996;17:501–7.

    Article  CAS  Google Scholar 

  27. Tengvall P, Lundström I. Physico–chemical considerations of titanium as a biomaterial. Clin Mater. 1992;9:115–34.

    Article  CAS  Google Scholar 

  28. Miyaji F, Zang X, Yao T, Kokubo T, Ohtsuki C, Kitsugi T, Yamamuro T, Nakamura T. Chemical treatment of Ti metal to induce its bioactivity. Bioceramics. 1994;7:119–24.

    CAS  Google Scholar 

  29. Eckert KL, Ha SW, Mathey M, Wintermantel E. Ceramic processing of titania for biomedical applications. Bioceramics. 1995;8:447–52.

    CAS  Google Scholar 

  30. Yan WQ, Nakamura T, Kobayashi M, Kokubo T, Kim HM, Miyaji F. Bone-bonding behavior of titanium implants prepared via chemical treatments. Bioceramics. 1996;9:305–9.

    CAS  Google Scholar 

  31. Brinker CJ, Hurd AJ, Frye GC, Schunk PR, Ashley CS. In: Hench LL, West JK, editors. Sol-gel thin-film formation in chemical processing of advanced materials. New York: Wiley; 1992. p. 395–413.

    Google Scholar 

  32. Sakka S. Preparation and properties of sol-gel coating films. J Sol–Gel Sci Tech. 1994;2:451–5.

    Article  CAS  Google Scholar 

  33. Zhong J, Greenspan DC. Processing and properties of sol–gel bioactive glasses. J Biomed Mater Res. 2000;53:694.

    Article  CAS  Google Scholar 

  34. Sepulveda P, Jones JR, Hench LL. In vitro disso- lution of melt-derived 45S5 and sol–gel derived 58S bioactive glasses. J Biomed Mater Res. 2002;61:301.

    Article  CAS  Google Scholar 

  35. Bielby RC, Christodoulou IS, Pryce RS, Radford WJP, Hench LL, Polak JM. Time- and concentration-dependent effects of dissolution products of 58S sol-gel bioactive glass on proliferation and differentiation of murine and human osteoblasts. Tissue Eng. 2004;10:1018.

    CAS  Google Scholar 

  36. Kokubo T, Kushitani H, Sakka S, Kitshugi T, Yamamuro T. Solutions able to reproduce in vivo surface-structure changes in bioactive glass-ceramics A-W3. J Biomed Mater Res. 1990;28:721.

    Article  Google Scholar 

  37. Webster TJ, Ergun C, Doremus RH, Siegel RW, Bizios R. Specific proteins mediate enhanced osteoblast adhesion on nanophase ceramics. J Biomed Mater Res. 2000;51:475.

    Article  CAS  Google Scholar 

  38. Webster TJ, Ergun C, Doremus RH, Siegel RW, Bizios R. Enhanced osteoclast-like cell functions on nanophase ceramics. Biomaterials. 2001;22:1327.

    Article  CAS  Google Scholar 

  39. Akin FA, Zreiqat H, Jordan S, et al. Preparation and analysis of macroporous TiO2 on Ti surfaces for bone-tissue implants. J Biomed Mater Res. 2001;57:588.

    Article  CAS  Google Scholar 

  40. Yerokhin AL, Nie X, Leyland A, et al. Plasma electrolysis for surface. Surf. Coat Technol. 1999;122:73.

    Article  CAS  Google Scholar 

  41. Duran A, Serna C, Fornes V, Fernandez Navarro JMJ. Structural considerations about SiO2 glasses prepared by sol–gel. Non Cryst Solids. 1986;82(1–3):69–77.

    Article  CAS  Google Scholar 

  42. Dutoit DCM, Schmeider M, Baiker A. Titania–silica mixed oxides I Influence of sol–gel and drying conditions on structural properties. J Catal. 1995;153(1):165–76.

    Article  CAS  Google Scholar 

  43. Zhang M, Shi L, Shuai Y, Zhao Y, Fang J. A novel route to prepare Ph and temperature-sensitive nanogels via a semibatch process. J Colloid Interface Sci. 2009;330(2):113–8.

    Article  CAS  Google Scholar 

  44. Li R, Clark AE, Hench LL. An investigation of bioactive glass powders by sol–gel processing. J Appl Biomater. 1991;2:231–9.

    Article  CAS  Google Scholar 

  45. Vallet-Regi M, Izquierdo-Barba I, Salinas AJ. Influence of P2O5 on crystallinity of apatite formed in vitro on surface of bioactive glasses. J Biomed Mater Res. 1999;46:560–5.

    Article  CAS  Google Scholar 

  46. Peltola T, Jokinen M, Rahiala H, Levanen E, Rosenholm JB, Kangasniemi I, Yli-Urpo A. Calcium phosphate formation on porous sol–gel derived SiO2 and CaO–P2O5–SiO2 substrates in vitro. J Biomed Mater Res. 1999;44:12–21.

    Article  CAS  Google Scholar 

  47. Izquierdo-Barba I, Salinas AJ, Vallet-Regi M. Effect of the continuous solution exchange on in vitro reactivity of a CaO–SiO2 sol–gel glass. J Biomed Mater Res. 2000;51:191–9.

    Article  CAS  Google Scholar 

  48. Xynos I, Edgar A, Buttery L, Hench L, Polak J. Gene-expression profiling of human osteoblasts following treatment with the ionic products of bioglass 45S5 dissoultion. J Biomed Mater Res. 2001;55:151.

    Article  CAS  Google Scholar 

  49. Orignac X, Vasconcelos HC, Du XM, Almeida RM. Influence of solvent concentration on the microstructure of SiO2–TiO2 sol-gel films. J Sol-Gel Sci Technol. 1997;8:243–8.

    CAS  Google Scholar 

  50. Torruellas WE, Weller Brophy LA, Zanoni R, Stegeman GI, Osborne Z, Zelinski BJJ. Thir-harmonic generation measurement of nonlinearities in SiO2–TiO2 sol-gel films. Appl Phys Lett. 1991;58:1128–30.

    Article  CAS  Google Scholar 

  51. Atik M, Zarzycki J. Protective TiO2–SiO2 coatings on stainless steel sheets prepared by a dip-coating technique. J Mater Sci Lett. 1994;13:1301–4.

    Article  CAS  Google Scholar 

  52. Almeida RM, Christensen EE. Crystallization behavior of SiO2–TiO2 sol-gel thin films. J Sol-Gel Sci Technol. 1997;8:409–13.

    CAS  Google Scholar 

  53. Salama SN, El-Batal HA. Microhardness of phosphate glasses. J Non Cryst Solids. 1994;168:179–85.

    Article  CAS  Google Scholar 

  54. Coreno J, Rodriguez R, Araiza MA, Castano VM. Growth of calcium phosphate onto coagulated silica prepared by using modified simulated body fluids. J Mater Chem. 1998;8(12):2807–12.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Saeed Karbasi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dadash, M.S., Karbasi, S., Esfahani, M.N. et al. Influence of calcinated and non calcinated nanobioglass particles on hardness and bioactivity of sol–gel-derived TiO2–SiO2 nano composite coatings on stainless steel substrates. J Mater Sci: Mater Med 22, 829–838 (2011). https://doi.org/10.1007/s10856-011-4270-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10856-011-4270-2

Keywords

Navigation