Skip to main content
Log in

Antibacterial coatings on haemodialysis catheters by photochemical deposition of silver nanoparticles

  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

Antibacterial coatings on catheters for acute dialysis were obtained by an innovative and patented silver deposition technique based on the photo-reduction of the silver solution on the surface of catheter, with consequent formation of antibacterial silver nanoparticles. Aim of this work is the structural and morphological characterization of these medical devices in order to analyze the distribution and the size of clusters on the polymeric surface, and to verify the antibacterial capability of the devices treated by this technique against bacterial proliferation. The structure and morphology of the silver nanoparticles were investigated by using scanning and transmission electron microscopy. The antimicrobial capability of the catheters after silver deposition was confirmed by antibacterial tests with Escherichia coli. Both scanning electron microscopy analysis and antibacterial tests were performed also after washing catheters for 30 days in deionized water at 37°C, relating these data to thermogravimetric analysis and to energy dispersive spectroscopy, in order to check the resistance of coating and its antimicrobial capability after the maximum time of life of these devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Zhao G, Stevens SE. Multiple parameters for the comprehensive evaluation of the susceptibility of Escherichia coli to the silver ion. Biometals. 1998;11:27–32.

    Article  CAS  Google Scholar 

  2. Nassar GM, Ayus JC. Infectious complications of the hemodialysis access. Kidney Int. 2001;60:1–13.

    Article  CAS  Google Scholar 

  3. Reid G. Biofilms in infectious disease and on medical devices. Int J Antimicrob Agents. 1999;11:223–6.

    Article  CAS  Google Scholar 

  4. Dasgupta MK. Biofilms and infection in dialysis patients. Semin Dial. 2002;15:338–46.

    Article  Google Scholar 

  5. Donlan RM. Biofilms and device associated infections. Emerg Infect Dis. 2001;7:277–81.

    Article  CAS  Google Scholar 

  6. Shintani H. Modification of medical device surface to attain anti-infection. Trends Biomater Artif Organs. 2004;18:1–8.

    Google Scholar 

  7. Kappell GM, Grover JP, Chrzanowski TH. Micro-scale surface-patterning influences biofilm formation. Electron J Biotechnol. 2009;12:10–1.

    Google Scholar 

  8. De Nardo L, Farè S, Di Matteo V, Cipolla E, Saino E, Visai L, Speziale P, Tanzi MC. New heparinizable modified poly(carbonate urethane) surfaces diminishing bacterial colonization. J Mater Sci Mater Med. 2007;18:2109–15.

    Article  Google Scholar 

  9. Dror N, Mandel M, Hazan Z, Lavie G. Advances in microbial biofilm prevention on indwelling medical devices with emphasis on usage of acoustic energy. Sensors. 2009;9:2538–54.

    Article  CAS  Google Scholar 

  10. Francolini I, Donelli G, Stoodley P. Polymer designs to control biofilm growth on medical devices. Rev Environ Sci Biotechnol. 2003;2:307–19.

    Article  CAS  Google Scholar 

  11. Sondi I, Salopek-Sondi B. Silver nanoparticles as antimicrobial agent: a case study on E. Coli as a model for gram-negative bacteria. J Colloid Interface Sci. 2004;275:177–82.

    Article  CAS  Google Scholar 

  12. Kim JS, Kuk E, Yu KN, Kim JH, Park SJ, Lee HJ, et al. Antimicrobial effects of silver nanoparticles. Nanomedicine. 2007;3:95–101.

    CAS  Google Scholar 

  13. Singh M, Singh S, Prasad S, Gambhir IS. Nanotechnology in medicine and antibacterial effect of silver nanoparticles. Dig J Nanomater Biostruct. 2008;3:115–22.

    Google Scholar 

  14. Samuel U, Guggenbichler JP. Prevention of catheter-related infections: the potential of a new nano-silver impregnated catheter. Int J Antimicrob Agents. 2004;23:75–8.

    Article  Google Scholar 

  15. Fung LC, Khoury AE, Vas SI, Smith C, Oreopoulos DG, Mittelman MW. Biocompatibility of silver-coated peritoneal dialysis catheters in a porcine model. Perit Dial Int. 1996;16:398–405.

    CAS  Google Scholar 

  16. Schierholz JM, Lucasj LJ, Rump A, Pulverer G. Efficacy of silver-coated medical devices. J Hosp Infect. 1998;40:257–62.

    Article  CAS  Google Scholar 

  17. Atiyeh BS, Costagliola M, Hayek SN, Dibo SA. Effect of silver on burn wound infection control and healing: review of the literature. Burns. 2007;33:139–48.

    Article  Google Scholar 

  18. Pollini M, Russo M, Licciulli A, Sannino A, Maffezzoli A. Characterization of antibacterial silver coated yarns. J Mater Sci Mater Med. 2009;20:2361–6.

    Article  CAS  Google Scholar 

  19. Phuong Phong NT, Thanh NVK, Phuong PH. Fabrication of antibacterial water filter by coating silver nanoparticles on flexible polyurethane foams. J Phys Conf Ser. 2009;187:012079.

    Article  Google Scholar 

  20. Monteiro DR, Gorup LF, Takamiya AS, Ruvollo-Filho AC, Rodrigues de Camargo E, Barbosa DB. The growing importance of materials that prevent microbial adhesion: antimicrobial effect of medical devices containing silver. Int J Antimicrob Agents. 2009;34:103–10.

    Article  CAS  Google Scholar 

  21. Guggenbichler JP, Boswald M, Lugauer S, Krall T. A new technology of microdispersed silver in polyurethane induces antimicrobial activity in central venous catheters. Infection. 1999;27:16–23.

    Article  Google Scholar 

  22. Wolf HH, Leithäuser M, Maschmeyer G, Salwender H, Klein U, Chaberny I, et al. Central venous catheter-related infections in hematology and oncology. Ann Hematol. 2008;87:863–76.

    Article  Google Scholar 

  23. Bambauer R, Latza R, Bambauer S, Tobin E. Large bore catheters with surface treatments versus untreated catheters for vascular access in hemodialysis. Artif Organs. 2004;28:604–10.

    Article  Google Scholar 

  24. Darouiche RO, Raad II, Heard SO, Thornby JI, Wenker OC, Gabrielli A, et al. A comparison of two antimicrobial-impregnated central venous catheters. N Engl J Med. 1999;340:1–8.

    Article  CAS  Google Scholar 

  25. Panacek A, Kvıtek L, Prucek R, Milan Kolar M, Renata Vecerova R, Pizurova N, et al. Silver colloid nanoparticles: synthesis, characterization, and their antibacterial activity. J Phys Chem B. 2006;110:16248–53.

    Article  CAS  Google Scholar 

  26. Pollini M, Sannino A, Maffezzoli A, Licciulli A. Antibacterial surface treatments based on silver clusters deposition. EP20050850988 (2008-11-05).

  27. Verbeke F, Haung U, Dhondt A, Beck W, Schnell A, Dietrich R, Deppisch R, Vanholder R. The role of polymer surface degradation and barium sulphate release in the pathogenesis of catheter-related infection. Nephrol Dial Transplant. 2010;25:1207–13.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Pollini.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pollini, M., Paladini, F., Catalano, M. et al. Antibacterial coatings on haemodialysis catheters by photochemical deposition of silver nanoparticles. J Mater Sci: Mater Med 22, 2005–2012 (2011). https://doi.org/10.1007/s10856-011-4380-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10856-011-4380-x

Keywords

Navigation