Skip to main content

Advertisement

Log in

Preparation of chitosan films using different neutralizing solutions to improve endothelial cell compatibility

  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

The development of chitosan-based constructs for application in large-size defects or highly vascularized tissues is still a challenging issue. The poor endothelial cell compatibility of chitosan hinders the colonization of vascular endothelial cells in the chitosan-based constructs, and retards the establishment of a functional microvascular network following implantation. The aim of the present study is to prepare chitosan films with different neutralization methods to improve their endothelial cell compatibility. Chitosan salt films were neutralized with either sodium hydroxide (NaOH) aqueous solution, NaOH ethanol solution, or ethanol solution without NaOH. The physicochemical properties and endothelial cell compatibility of the chitosan films were investigated. Results indicated that neutralization with different solutions affected the surface chemistry, swelling ratio, crystalline conformation, nanotopography, and mechanical properties of the chitosan films. The NaOH ethanol solution-neutralized chitosan film (Chi-NaOH/EtOH film) displayed a nanofiber-dominant surface, while the NaOH aqueous solution-neutralized film (Chi-NaOH/H2O film) and the ethanol solution-neutralized film (Chi-EtOH film) displayed nanoparticle-dominant surfaces. Moreover, the Chi-NaOH/EtOH films exhibited a higher stiffness as compared to the Chi-NaOH/H2O and Chi-EtOH films. Endothelial cell compatibility of the chitosan films was evaluated with a human microvascular endothelial cell line, HMEC-1. Compared with the Chi-NaOH/H2O and Chi-EtOH films, HMECs cultured on the Chi-NaOH/EtOH films fully spread and exhibited significantly higher levels of adhesion and proliferation, with retention of the endothelial phenotype and function. Our findings suggest that the surface nanotopography and mechanical properties contribute to determining the endothelial cell compatibility of chitosan films. The nature of the neutralizing solutions can affect the physicochemical properties and endothelial cell compatibility of chitosan films. Therefore, selection of suitable neutralization methods is highly important for the application of chitosan in tissue engineering.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Suh JK, Matthew HW. Application of chitosan-based polysaccharide biomaterials in cartilage tissue engineering: a review. Biomaterials. 2000;21:2589–98.

    Article  CAS  Google Scholar 

  2. Martino AD, Sittinger M, Risbud MV. Chitosan: a versatile biopolymer for orthopaedic tissue-engineering. Biomaterials. 2005;26:5983–90.

    Article  Google Scholar 

  3. Ao Q, Wang A, Cao W, Zhang L, Kong L, He Q, Gong Y, Zhang X. Manufacture of multimicrotubule chitosan nerve conduits with novel molds and characterization in vitro. J Biomed Mater Res A. 2006;77A:11–8.

    Article  CAS  Google Scholar 

  4. Moon JJ, West JL. Vascularization of engineered tissues: approaches to promote angiogenesis in biomaterials. Curr Top Med Chem. 2008;8:300–10.

    Article  CAS  Google Scholar 

  5. Unger RE, Peters K, Wolf M, Motta A, Migliaresi C, Kirkpatrick CJ. Endothelialization of a non-woven silk fibroin net for use in tissue engineering: growth and gene regulation of human endothelial cells. Biomaterials. 2004;25:5137–46.

    Article  CAS  Google Scholar 

  6. Chupa JM, Foster AM, Sumner SR, Madihally SV, Matthew HW. Vascular cell responses to polysaccharide materials: in vitro and in vivo evaluations. Biomaterials. 2000;21:2315–22.

    Article  CAS  Google Scholar 

  7. Chung TW, Lu YF, Wang SS, Lin YS, Chu SH. Growth of human endothelial cells on photochemically grafted Gly-Arg-Gly-Asp (GRGD) chitosans. Biomaterials. 2002;23:4803–9.

    Article  CAS  Google Scholar 

  8. Amaral IF, Unger RE, Fuchs S, Mendonca AM, Sousa SR, Barbosa MA, Pego AP, Kirkpatrick CJ. Fibronectin-mediated endothelialisation of chitosan porous matrices. Biomaterials. 2009;30:5465–75.

    Article  CAS  Google Scholar 

  9. Zheng Z, Zhang L, Kong L, Wang A, Gong Y, Zhang X. The behavior of MC3T3–E1 cells on chitosan/poly-l-lysine composite films: effect of nanotopography, surface chemistry, and wettability. J Biomed Mater Res A. 2009;89A:453–65.

    Article  CAS  Google Scholar 

  10. Cheng M, Deng J, Yang F, Gong Y, Zhao N, Zhang X. Study on physical properties and nerve cell affinity of composite films from chitosan and gelatin solutions. Biomaterials. 2003;24:2871–80.

    Article  CAS  Google Scholar 

  11. Ades EW, Candal FJ, Swerlick RA, George VG, Summers S, Bosse DC, Lawley TJ. HMEC-1: establishment of an immortalized human microvascular endothelial cell line. J Invest Dermatol. 1992;99:683–90.

    Article  CAS  Google Scholar 

  12. Shin M, Matsuda K, Ishii O, Terai H, Kaazempur-Mofrad M, Borenstein J, Detmar M, Vacanti JP. Endothelialized networks with a vascular geometry in microfabricated poly (dimethyl siloxane). Biomed Microdevices. 2004;6:269–78.

    Article  CAS  Google Scholar 

  13. Hakimi O, Gheysens T, Vollrath F, Grahn MF, Knight DP, Vadgama P. Modulation of cell growth on exposure to silkworm and spider silk fibers. J Biomed Mater Res A. 2010;92A:1366–72.

    CAS  Google Scholar 

  14. Ogwu AA, Okpalugo TIT, Ali N, Maguire PD, McLaughlin JAD. Endothelial cell growth on silicon modified hydrogenated amorphous carbon thin films. J Biomed Mater Res B. 2008;85B:105–13.

    Article  CAS  Google Scholar 

  15. Xu J, McCarthy SP, Gross RA. Chitosan film acylation and effects on biodegradability. Macromolecules. 1996;29:3436–40.

    Article  CAS  Google Scholar 

  16. Katti KS, Katti DR, Dash R. Synthesis and characterization of a novel chitosan/montmorillonite/hydroxyapatite nanocomposite for bone tissue engineering. Biomed Mater. 2008;3:034122.

    Article  Google Scholar 

  17. Demarger-Andre S, Domard A. Chitosan carboxylic acid salts in solution and in the solid state. Carbohyd Polym. 1994;23:211–9.

    Article  CAS  Google Scholar 

  18. Osman Z, Arof AK. FTIR studies of chitosan acetate based polymer electrolytes. Electrochim Acta. 2003;48:993–9.

    Article  CAS  Google Scholar 

  19. Cao W, Jing D, Li J, Gong Y, Zhao N, Zhang X. Effects of the degree of deacetylation on the physicochemical properties and Schwann cell affinity of chitosan films. J Biomater Appl. 2005;20:157–77.

    Article  CAS  Google Scholar 

  20. Ogawa K, Yui T, Miya M. Dependence on the preparation procedure of the polymorphism and crystalline of chitosan membranes. Biosci Biotechnol Biochem. 1992;56:858–62.

    Article  CAS  Google Scholar 

  21. Ogawa K. Effect of heating an aqueous suspension of chitosan on the crystallinity and polymorphs. Agric Biol Chem. 1991;55:2375–9.

    Article  CAS  Google Scholar 

  22. Yamamoto A, Kawada J, Yui T, Ogawa K. Conformation behavior of chitosan in the acetate salt: an X-ray study. Biosci Biotechnol Biochem. 1997;61:1230–2.

    Article  CAS  Google Scholar 

  23. van Beijnum JR, van der Linden E, Griffioen AW. Angiogenic profiling and comparison of immortalized endothelial cells for functional genomics. Exp Cell Res. 2008;314:264–72.

    Article  Google Scholar 

  24. Peters K, Unger RE, Stumpf S, Schafer J, Tsaryk R, Hoffmann B, Eisenbarth E, Breme J, Ziegler G, Kirkpatrick CJ. Cell type-specific aspects in biocompatibility testing: the intercellular contact in vitro as an indicator for endothelial cell compatibility. J Mater Sci Mater Med. 2008;19:1637–44.

    Article  CAS  Google Scholar 

  25. Vestweber D. Molecular mechanisms that control endothelial cell contacts. J Pathol. 2000;190:281–91.

    Article  CAS  Google Scholar 

  26. Jha KK, Banga S, Palejwala V, Ozer HL. SV40-mediated immortalization. Exp Cell Res. 1998;245:1–7.

    Article  CAS  Google Scholar 

  27. Cheng J, DeCaprio JA, Fluck MM, Schaffhausen BS. Cellular transformation by simian virus 40 and murine polyoma virus T antigens. Semin Cancer Biol. 2009;19:218–28.

    Article  CAS  Google Scholar 

  28. Marchetti A, Cecchinelli B, D’Angelo M, D’Orazi G, Crescenzi M, Sacchi A, Soddu S. p53 can inhibit cell proliferation through caspase-mediated cleavage of ERK2/MAPK. Cell Death Differ. 2004;11:596–607.

    Article  CAS  Google Scholar 

  29. Gottifredi V, Pelicci G, Munarriz E, Maione R, Pelicci PG, Amati P. Polyomavirus large T antigen induces alterations in cytoplasmic signalling pathways involving Shc activation. J Virol. 1999;73:1427–37.

    CAS  Google Scholar 

  30. Fei ZL, D’Ambrosio C, Li S, Surmacz E, Baserga R. Association of insulin receptor substrate 1 with simian virus 40 large T antigen. Mol Cell Biol. 1995;15:4232–9.

    CAS  Google Scholar 

  31. Weng LP, Smith WM, Brown JL, Eng C. PTEN inhibits insulin-stimulated MEK/MAPK activation and cell growth by blocking IRS-1 phosphorylation and IRS-1/Grb-2/Sos complex formation in a breast cancer model. Hum Mol Genet. 2001;10:605–16.

    Article  CAS  Google Scholar 

  32. Wu GS. The functional interactions between the p53 and MAPK signaling pathways. Cancer Biol Ther. 2004;3:156–61.

    CAS  Google Scholar 

  33. Ferrero E, Bondanza A, Leone BE, Manici S, Poggi A, Zocchi MR. CD14+CD34+ peripheral blood mononuclear cells migrate across endothelium and give rise to immunostimulatory dendritic cells. J Immunol. 1998;160:2675–83.

    CAS  Google Scholar 

  34. Ferrero E, Villa A, Ferrero ME, Toninelli E, Bender JR, Pardi R, Zocchi MR. Tumor necrosis factor α-induced vascular leakage involves PECAM1 phosphorylation. Cancer Res. 1996;56:3211–5.

    CAS  Google Scholar 

  35. Janic B, Guo AM, Iskander ASM, Varma NRS, Scicli AG, Arbab AS. Human cord blood-derived AC133 + progenitor cells preserve endothelial progenitor characteristics after long term in vitro expansion. PLoS ONE. 2010;5:e9173.

    Article  Google Scholar 

  36. Kubota Y, Kleinman HK, Martin GR, Lawley TJ. Role of laminin and basement membrane in the morphological differentiation of human endothelial ceils into capillary-like structures. J Cell Biol. 1988;107:1589–98.

    Article  CAS  Google Scholar 

  37. Chalupowicz DG, Chowdhury ZA, Bach TL, Barsigian C, Martinez J. Fibrin II induces endothelial cell capillary tube formation. J Cell Biol. 1995;130:207–15.

    Article  CAS  Google Scholar 

  38. Kumar VBS, Viji RI, Kiran MS, Sudhakaran PR. Modulation of expression of LDH isoenzymes in endothelial cells by laminin: implications for angiogenesis. J Cell Biochem. 2008;103:1808–25.

    Article  CAS  Google Scholar 

  39. Ogawa K, Yui T, Okuyama K. Three D structures of chitosan. Int J Biol Macromol. 2004;34:1–8.

    Article  CAS  Google Scholar 

  40. Kawada J, Yui T, Okuyama K, Ogawa K. Crystalline behavior of chitosan organic acid salts. Biosci Biotechnol Biochem. 2001;65:2542–7.

    Article  CAS  Google Scholar 

  41. Notin L, Viton C, David L, Alcouffe P, Rochas C, Domard A. Morphology and mechanical properties of chitosan fibers obtained by gel-spinning: influence of the dry-jet-stretching step and ageing. Acta Biomater. 2006;2:387–402.

    Article  Google Scholar 

  42. Yamaguchi I, Itoh S, Suzuki M, Sakane M, Osaka A, Tanaka J. The chitosan prepared from crab tendon I: the characterization and the mechanical properties. Biomaterials. 2003;24:2031–6.

    Article  CAS  Google Scholar 

  43. Osorio-Madrazo A, David L, Trombotto S, Lucas JM, Peniche-Covas C, Domard A. Kinetics study of the solid-state acid hydrolysis of chitosan: evolution of the crystallinity and macromolecular structure. Biomacromolecules. 2010;11:1376–86.

    Article  CAS  Google Scholar 

  44. Ogawa K, Hirano S, Miyanishi T, Yui T, Watanabe T. A new polymorph of chitosan. Macromolecules. 1984;17:973–5.

    Article  CAS  Google Scholar 

  45. Wang QZ, Chen XG, Li ZX, Wang S, Liu CS, Meng XH, Liu CG, Lv YH, Yu LJ. Preparation and blood coagulation evaluation of chitosan microspheres. J Mater Sci Mater Med. 2008;19:1371–7.

    Article  CAS  Google Scholar 

  46. Singhvi R, Stephanopoulos G, Wang DI. Effects of substratum morphology on cell physiology. Biotechnol Bioeng. 1994;43:764–71.

    Article  CAS  Google Scholar 

  47. Lydon MJ, Minett TW, Tighe BJ. Cellular interactions with synthetic polymer surfaces in culture. Biomaterials. 1985;6:396–402.

    Article  CAS  Google Scholar 

  48. Flemming RG, Murphy CJ, Abrams GA, Goodman SL, Nealey PF. Effects of synthetic micro- and nano-structured surfaces on cell behavior. Biomaterials. 1999;20:573–88.

    Article  CAS  Google Scholar 

  49. Ingber DE, Folkman J. Mechanochemical switching between growth and differentiation during fibroblast growth factor-stimulated angiogenesis in vitro: role of extracellular matrix. J Cell Biol. 1989;109:317–30.

    Article  CAS  Google Scholar 

  50. Chu XH, Shi XL, Feng ZQ, Gu ZZ, Ding YT. Chitosan nanofiber scaffold enhances hepatocytes adhesion and function. Biotechnol Lett. 2009;31:347–52.

    Article  CAS  Google Scholar 

  51. Ma Z, Kotaki M, Inai R, Ramakrishna S. Potential of nanofiber matrix as tissue-engineering scaffolds. Tissue Eng. 2005;11:101–9.

    Article  Google Scholar 

  52. Scott JE. Extracellular matrix, supramolecular organization and shape. J Anat. 1995;187:259–69.

    CAS  Google Scholar 

  53. Zagris N. Extracellular matrix in development of the early embryo. Micron. 2001;32:427–38.

    Article  CAS  Google Scholar 

  54. Abrams GA, Goodman SL, Nealey PF, Franco M, Murphy CJ. Nanoscale topography of the basement membrane underlying the corneal epithelium of the rhesus macaque. Cell Tissue Res. 2000;299:39–46.

    Article  CAS  Google Scholar 

  55. Toh YC, Ng S, Khong YM, Zhang X, Zhu Y, Lin PC, Te CM, Sun W, Yu H. Cellular responses to a nanofibrous environment. Nano Today. 2006;1:34–43.

    Article  Google Scholar 

  56. Feng ZQ, Lu HJ, Leach MK, Huang NP, Wang YC, Liu CJ, Gu ZZ. The influence of type-I collagen-coated PLLA aligned nanofibers on growth of blood outgrowth endothelial cells. Biomed Mater. 2010;5:065011.

    Article  Google Scholar 

  57. Francois S, Chakfe N, Durand B, Laroche G. A poly (l-lactic acid) nanofibre mesh scaffold for endothelial cells on vascular prostheses. Acta Biomater. 2009;5:2418–28.

    Article  CAS  Google Scholar 

  58. Yeung T, Georges PC, Flanagan LA, Marg B, Ortiz M, Funaki M, Zahir N, Ming W, Weaver V, Janmey PA. Effects of substrate stiffness on cell morphology, cytoskeletal structure, and adhesion. Cell Motil Cytoskel. 2005;60:24–34.

    Article  Google Scholar 

  59. Thompson MT, Berg MC, Tobias IS, Rubner MF, van Vliet KJ. Tuning compliance of nanoscale polyelectrolyte multilayers to modulate cell adhesion. Biomaterials. 2005;26:6836–45.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by grants from The National Natural Science Foundation of China (30700848, 30772443), The National Basic Research Program of China (“973 Program”, 2005CB623905) and The National Natural Science Foundation of Beijing (7082090).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiufang Zhang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

He, Q., Ao, Q., Gong, Y. et al. Preparation of chitosan films using different neutralizing solutions to improve endothelial cell compatibility. J Mater Sci: Mater Med 22, 2791–2802 (2011). https://doi.org/10.1007/s10856-011-4444-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10856-011-4444-y

Keywords

Navigation