Skip to main content
Log in

Electrospun fibrous scaffold of hydroxyapatite/poly (ε-caprolactone) for bone regeneration

  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

Development of fibrous scaffold of hydroxyapatite/biopolymer nanocomposite offers great potential in the field of bone regeneration and tissue engineering. Hydroxyapatite (HA)/poly (ε-caprolactone) (PCL) fibrous scaffolds were successfully prepared by electrospinning dopes containing HA and PCL in this work. It was found that pre-treating HA with γ-glycioxypropyltrimethoxysilane (A-187) was effective in improving HA dispersion both in solutions and in a PCL matrix. Mechanical properties of the scaffolds were greatly enhanced by the filling of A187-HA. The bioactivity of PCL was remarkably improved by the addition of HA and A187-HA. Fibroblasts and osteoblasts were seeded on scaffolds to evaluate the effect of A-187 on biocompatibility of HA/PCL composites. Based on this study, good dispersion of HA in PCL matrix was granted by pretreatment of HA with A-187 and A187-HA/PCL fibrous scaffolds were obtained by electrospinning. These results demonstrated that the scaffolds may possess improved mechanical performance and good bioactivity due to A187-HA incorporation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Bonfield W. Composites for bone replacement. J Biomed Eng. 1988;10:522–6.

    Article  CAS  Google Scholar 

  2. Arafat MT, Lam CXF, Ekaputra AK, Wong SY, Li X, Gibson I. Biomimetic composite coating on rapid prototyped scaffolds for bone tissue engineering. Acta Biomater. 2011;7:809–20.

    Article  CAS  Google Scholar 

  3. Li JS, Chen Y, Mak AFT, Tuan RS, Li L, Li Y. A one-step method to fabricate PLLA scaffolds with deposition of bioactive hydroxyapatite and collagen using ice-based microporogens. Acta Biomater. 2010;6:2013–9.

    Article  CAS  Google Scholar 

  4. Ye L, Zeng XC, Li HJ, Ai Y. Fabrication and biocompatibility of nano non-stoichiometric apatite and poly (ε-caprolactone) composite scaffold by using prototyping controlled process. J Mater Sci Mater Med. 2010;21:753–60.

    Article  CAS  Google Scholar 

  5. Hench LL, Polak JM. Third-generation biomedical materials. Science. 2002;295:1014–7.

    Article  CAS  Google Scholar 

  6. Hench LL. Bioceramics: from concept to clinic. J Am Ceram Soc. 1991;74:1485–510.

    Article  Google Scholar 

  7. Jongwattanapisan P, Charoenphandhu N, Krishnamra N, Thongbunchoo J, Tang I-M, Hoonsawat R, Smith SM, Pon-On W. In vitro study of the SBF and osteoblast-like cells on hydroxyapatite/chitosan–silica nanocomposite. Mat Sci Eng C. 2011;31:290–9.

    Article  CAS  Google Scholar 

  8. Zhao J, Guo LY, Yang XB, Weng J. Preparation of bioactive porous HA/PCL composite scaffolds. Appl Surf Sci. 2008;255:2942–6.

    Article  CAS  Google Scholar 

  9. Kikuchi M, Koyama Y, Yamada T, Imamura Y, Okada T, Shirahama N, Akita K, Takakuda K, Tanaka J. Development of guided bone regeneration membrane composed of β-tricalcium phosphate and poly (l-lactide-co-glycolide-co-ε-caprolactone) composites. Biomaterials. 2004;25:5979–86.

    Article  CAS  Google Scholar 

  10. Jegal SH, Park JH, Kim JH, Kim TH, Shin US, Kim TI, Kim HW. Functional composite nanofibers of poly (lactide–co-caprolactone) containing gelatin–apatite bone mimetic precipitate for bone regeneration. Acta Biomater. 2011;7:1609–17.

    Article  CAS  Google Scholar 

  11. Kim HW, Knowles JC, Kim HE. Hydroxyapatite/poly (ε-caprolactone) composite coatings on hydroxyapatite porous bone scaffold for drug delivery. Biomaterials. 2004;25:1279–87.

    Article  CAS  Google Scholar 

  12. Yanagida H, Okada M, Masuda M, Ueki M, Narama I, Kitao S, Koyama Y, Furuzono T, Takakuda K. Cell adhesion and tissue response to hydroxyapatite nanocrystal-coated poly(l-lactic acid) fabric. J Biosci Bioeng. 2009;108(3):235–43.

    Article  CAS  Google Scholar 

  13. Deng C, Yao N, Lu X, Qu S, Feng B, Weng J, Yang XB. Comparison of Ca/P mineralization on the surfaces of poly (ε-caprolactone) composites filled with silane-modified nano-apatite. J Mater Sci. 2009;44:4394–8.

    Article  CAS  Google Scholar 

  14. Choi D, Marra KG, Kumta PN. Chemical synthesis of hydroxyapatite/poly (ε-caprolactone) composites. Mater Res Bull. 2004;39:417–32.

    Article  CAS  Google Scholar 

  15. Schiller C, Epple M. Carbonated calcium phosphates are suitable pH-stabilising fillers for biodegradable polyesters. Biomaterials. 2003;24:2037–43.

    Article  CAS  Google Scholar 

  16. Taylor MS, Daniels AU, Andriano KP, Heller J. Six bioabsorbable polymers: in vitro acute toxicity of accumulated degradation products. J Appl Biomater. 1994;5:151–7.

    Article  CAS  Google Scholar 

  17. Kim HW, Kim HE, Salih V. Stimulation of osteoblast responses to biomimetic nanocomposites of gelatin–hydroxyapatite for tissue engineering scaffolds. Biomaterials. 2005;26:5221–30.

    Article  CAS  Google Scholar 

  18. Kim HW. Biomedical nanocomposites of hydroxyapatite/polycaprolactone obtained by surfactant mediation. J Biomed Mater Res. 2007;83A:169–77.

    Article  CAS  Google Scholar 

  19. Song JH, Kim HE, Kim HW. Electrospun fibrous web of collagen–apatite precipitated nanocomposite for bone regeneration. J Mater Sci Mater Med. 2008;19:2925–32.

    Article  CAS  Google Scholar 

  20. Cui WG, Li XH, Xie CY, Zhuang HH, Zhou SB, Weng J. Hydroxyapatite nucleation and growth mechanism on electrospun fibers functionalized with different chemical groups and their combinations. Biomaterials. 2010;31:4620–9.

    Article  CAS  Google Scholar 

  21. Li M, Zhang J, Zhang H, Liu Y, Wang C, Xu X, Tang Y, Yang B. Electrospinning: a facile method to disperse fluorescent quantum dots in nanofibers without förster resonance energy transfer. Adv Funct Mater. 2007;17(7):3650–6.

    Article  Google Scholar 

  22. Chen JP, Chang YS. Preparation and characterization of composite nanofibers of polycaprolactone and nanohydroxyapatite for osteogenic differentiation of mesenchymal stem cells. Colloid Surface B. 2011;86(1):169–75.

    Article  CAS  Google Scholar 

  23. Zhang YZ, Venugopal JR, El-Turki A, Ramakrishna S, Su B, Lim CT. Electrospun biomimetic nanocomposite nanofibers of hydroxyapatite/chitosan for bone tissue engineering. Biomaterials. 2008;29:4314–22.

    Article  CAS  Google Scholar 

  24. Kim HW, Song JH, Kim HE. Nanofiber generation of gelatin–hydroxyapatite biomimetics for guided tissue regeneration. Adv Funct Mater. 2005;15(12):1988–94.

    Article  CAS  Google Scholar 

  25. Li C, Vepari C, Jin HJ, Kim HJ, Kaplan DL. Electrospun silk-BMP-2 scaffolds for bone tissue engineering. Biomaterials. 2006;27(16):3115–24.

    Article  CAS  Google Scholar 

  26. Glimcher MJ. Molecular biology of mineralized tissues with particular reference to bone. Rev Mod Phy. 1959;31(2):359–93.

    Article  CAS  Google Scholar 

  27. Weiner S, Traub W. Organization of hydroxyapatite crystals within collagen fibrils. FEBS Lett. 1986;206(2):262–6.

    Article  CAS  Google Scholar 

  28. Rho JY, Kuhn-Spearing L, Zioupos P. Mechanical properties and the hierarchical structure of bone. Med Eng Phys. 1998;20(2):92–102.

    Article  CAS  Google Scholar 

  29. Landis WJ, Song MJ, Leith A, McEwen L, McEwen BF. Mineral and organic matrix interaction in normally calcifying tissue visualized in three dimensions by high voltage electron microscopic tomography and graphic image reconstruction. J Struct Biol. 1993;110(1):39–54.

    Article  CAS  Google Scholar 

  30. Kanjwal MA, Sheikh FA, Nirmala R, Macossay J, Kim HY. Fabrication of poly (caprolactone) nanofibers containing hydroxyapatite nanoparticles and their mineralization in a simulated body fluid. Fiber Polym. 2011;12(1):50–6.

    Article  CAS  Google Scholar 

  31. Deng C, Weng J, Duan K, Yao N, Yang X, Zhou S, Lu X, Qu S, Wan J, Feng B, Li X. Preparation and mechanical property of poly (ε-caprolactone)-matrix composites containing nano-apatite fillers modified by silane coupling agents. J Mater Sci Mater Med. 2010;21:3059–64.

    Article  CAS  Google Scholar 

  32. Li WJ, Tuli R, Huang X, Laquerriere P, Tuan RS. Multilineage differentiation of human mesenchymal stem cells in a three-dimensional nanofibrous scaffold. Biomaterials. 2005;26:5158–66.

    Article  CAS  Google Scholar 

  33. Yoshimoto H, Shin YM, Terai H, Vacanti JP. A biodegradable nanofiber scaffold by electrospinning and its potential for bone tissue engineering. Biomaterial. 2003;24:2077–82.

    Article  CAS  Google Scholar 

  34. Yang F, Wolke JGC, Jansen JA. Biomimetic calcium phosphate coating on electrospun poly (ε-caprolactone) scaffolds for bone tissue engineering. Chem Eng J. 2008;137:154–61.

    Article  CAS  Google Scholar 

  35. Kim HW, Song JH, Kim HE. Bioactive glass nanofiber–collagen nanocomposite as a novel bone regeneration matrix. J Biomed Mater Res A. 2006;79A:698–705.

    Article  CAS  Google Scholar 

  36. Sui G, Yang XP, Mei F, Hu XY, Chen GQ, Deng XL, Ryu S. Poly-L-lactic acid/hydroxyapatite hybrid membrane for bone tissue regeneration. J Biomed Mater Res. 2007;82A:445–54.

    Article  CAS  Google Scholar 

  37. Patcharaporn W, Neeracha S, Prasit P, Pitt S. Preparation and characterization of novel bone scaffolds based on electrospun polycaprolactone fibers filled with nanoparticles. Macromol Biosci. 2006;6:70–7.

    Article  Google Scholar 

  38. Miyaji F, Kim HM, Handa S, Kokubo T, Nakashi T. Bonelike apatite coating on organic polymers: novel nucleation process using sodium silicate solution. Biomaterials. 1999;20:913–9.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by the programme of Introducing Talents of Discipline to Universities (No. 111-2-04) in Shanghai, the Fund for Key Scientific and Technological Innovation in Zhejiang Province (2011R09039-07) and the scientific research programme of Department of Education in Zhejiang Province for Higher Education (Y201016694).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lingli Li.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, L., Li, G., Jiang, J. et al. Electrospun fibrous scaffold of hydroxyapatite/poly (ε-caprolactone) for bone regeneration. J Mater Sci: Mater Med 23, 547–554 (2012). https://doi.org/10.1007/s10856-011-4495-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10856-011-4495-0

Keywords

Navigation