Skip to main content

Advertisement

Log in

Preparation and biocompatibility study of in situ forming polymer implants in rat brains

  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

We describe the development of polymer implants that were designed to solidify once injected into rat brains. These implants comprised of glycofurol and copolymers of d,l-lactide (LA), ε-caprolactone and poly(ethylene glycol) (PLECs). Scanning electron microscopy (SEM) and gel permeation chromatography (GPC) showed that the extent of implant degradation was increased with LA content in copolymers. SEM analysis revealed the formation of porosity on implant surface as the degradation proceeds. PLEC with 19.3% mole of LA was chosen to inject in rat brains at the volume of 10, 25 and 40 μl. Body weights, hematological and histopathological data of rats treated with implants were evaluated on day 3, 6, 14, 30 and 45 after the injection. Polymer solution at the injection volume of 10 μl were tolerated relatively well compared to those of 25 and 40 μl as confirmed by higher body weight and healing action (fibrosis tissue) 30 days after treatment. The results from this study suggest a possible application as drug delivery systems that can bypass the blood brain barrier.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Gabathuler R. Blood–brain barrier transport of drugs for the treatment of brain diseases. CNS Neurol Disord Drug Targ. 2009;8(3):195–204.

    CAS  Google Scholar 

  2. Huynh GH, Deen DF, Szoka FC. Barriers to carrier mediated drug and gene delivery to brain tumors. J Control Release. 2006;110(2):236–59.

    Article  CAS  Google Scholar 

  3. Gutmann R, Leunig M, Feyh J, Goetz AE, Messmer K, Kastenbauer E, et al. Interstitial hypertension in head and neck tumors in patients: correlation with tumor size. Cancer Res. 1992;52(7):1993–5.

    CAS  Google Scholar 

  4. Jain RK. The next frontier of molecular medicine: delivery of therapeutics. Nat Med. 1998;4(6):655–7.

    Article  CAS  Google Scholar 

  5. Leunig M, Goetz AE, Dellian M, Zetterer G, Gamarra F, Jain RK, et al. Interstitial fluid pressure in solid tumors following hyperthermia: possible correlation with therapeutic response. Cancer Res. 1992;52(2):487–90.

    CAS  Google Scholar 

  6. Leunig M, Yuan F, Menger MD, Boucher Y, Goetz AE, Messmer K, et al. Angiogenesis, microvascular architecture, microhemodynamics, and interstitial fluid pressure during early growth of human adenocarcinoma LS174T in SCID mice. Cancer Res. 1992;52(23):6553–60.

    CAS  Google Scholar 

  7. Abbott NJ. Inflammatory mediators and modulation of blood–brain barrier permeability. Cell Mol Neurobiol. 2000;20(2):131–47.

    Article  CAS  Google Scholar 

  8. Bart J, Groen HJ, Hendrikse NH, van der Graaf WTA, Vaalburg W, de Vries EGE. The blood–brain barrier and oncology: new insights into function and modulation. Cancer Treat Rev. 2000;26(6):449–62.

    Article  CAS  Google Scholar 

  9. Steiniger S, Kreuter J, Khalansky AS, Skidan IN, Bobruskin AI, Smirnova ZS, et al. Chemotherapy of glioblastoma in rats using doxorubicin-loaded nanoparticles. Int J Cancer. 2004;109(5):759–67.

    Article  CAS  Google Scholar 

  10. Wu D, Pardridge WM. Blood–brain barrier transport of reduced folic acid. Pharm Res. 1999;16(3):415–9.

    Article  CAS  Google Scholar 

  11. Laske DW, Youle RJ, Oldfield EH. Tumor regression with regional distribution of the targeted toxin TF-CRM107 in patients with malignant brain tumors. Nat Med. 1997;3(12):1362–8.

    Article  CAS  Google Scholar 

  12. Guerin C, Olivi A, Weingart JD, Lawson HC, Brem H. Recent advances in brain tumor therapy: local intracerebral drug delivery by polymers. Investig New Drugs. 2004;22(1):27–37.

    Article  CAS  Google Scholar 

  13. Brem H, Langer R. Polymer-based drug delivery to the brain. Sci Med. 1996;3:9.

    Google Scholar 

  14. Gallego JM, Barcia JA, Barcia-Marino C. Fatal outcome related to carmustine implants in glioblastoma multiforme. Acta Neurochir. 2007;149(3):261–5. discussion 5.

    Article  CAS  Google Scholar 

  15. Boongird A, Nasongkla N, Hongeng S, Sukdawong N, Sa-Nguanruang W, Larbcharoensub N. Biocompatibility study of glycofurol in rat brains. Exp Biol Med. 2011;236(1):77–83.

    Article  CAS  Google Scholar 

  16. Weinberg BD, Patel RB, Wu H, Blanco E, Barnett CC, Exner AA, et al. Model simulation and experimental validation of intratumoral chemotherapy using multiple polymer implants. Med Bio Eng Comput. 2008;46(10):1039–49.

    Article  Google Scholar 

  17. Ivaturi VD, Riss JR, Kriel RL, Siegel RA, Cloyd JC. Bioavailability and tolerability of intranasal diazepam in healthy adult volunteers. Epilepsy Res. 2009;84(2–3):120–6.

    Article  CAS  Google Scholar 

  18. Eliaz RE, Szoka FC. Robust and prolonged gene expression from injectable polymeric implants. Gene Ther. 2002;9(18):1230–7.

    Article  CAS  Google Scholar 

  19. Bagger MA, Nielsen HW, Bechgaard E. Nasal bioavailability of peptide T in rabbits: absorption enhancement by sodium glycocholate and glycofurol. Eur J Pharm Sci. 2001;14(1):69–74.

    Article  CAS  Google Scholar 

  20. Hu Y, Jiang X, Ding Y, Zhang L, Yang C, Zhang J, et al. Preparation and drug release behaviors of nimodipine-loaded poly(caprolactone)–poly(ethylene oxide)–polylactide amphiphilic copolymer nanoparticles. Biomaterials. 2003;24(13):2395–404.

    Article  CAS  Google Scholar 

  21. Tsai CY, Chow NH, Ho TS, Lei HY. Intracerebral injection of myelin basic protein (MBP) induces inflammation in brain and causes paraplegia in MBP-sensitized B6 mice. Clin Exp Immunol. 1997;109(1):127–33.

    Article  CAS  Google Scholar 

  22. Paxinos G, Watson C. The rat brain in stereotaxic coordinates. 5th ed. Burlington: Elsevier Academic Press; 2005.

    Google Scholar 

  23. Siparsky GL, Voorhees KJ, Miao F. Hydrolysis of polylactic acid (PLA) and polycaprolactone (PCL) in aqueous acetonitrile solutions: autocatalysis. J Environ Polym Degrad. 1998;6(1):31–41.

    Article  CAS  Google Scholar 

  24. Gallego JM, Barcia JA, Barcia-Mariño C. Fatal outcome related to carmustine implants in glioblastoma multiforme. Acta Neurochir (Wien). 2007;149(3):261–5.

    Article  CAS  Google Scholar 

  25. Patel RB, Solorio L, Wu H, Krupka TM, Exner AA. Effect of injection site on in situ implant formation and drug release in vivo. J Control Release. 2010;147:350–8.

    Article  CAS  Google Scholar 

  26. Krupka TM, Weinberg BD, Ziats NP, Haaga JR, Exner AA. Injectable polymer depot combined with radiofrequency ablation for treatment of experimental carcinoma in rat. Investiga Radiol. 2006;41(12):890–7.

    Article  Google Scholar 

  27. Bjugstad KB, Lampe K, Kern DS, Mahoney M. Biocompatibility of poly(ethylene glycol)-based hydrogels in the brain: an analysis of the glial response across space and time. J Biomed Mater Res Part A. 2010;95A(1):79–91.

    Article  CAS  Google Scholar 

  28. Vertenten G, Vlaminck L, Gorski T, Schreurs E, Van Den Broeck W, Duchateau L, et al. Evaluation of an injectable, photopolymerizable three-dimensional scaffold based on d:l: -lactide and epsilon-caprolactone in a tibial goat model. J Mater Sci. 2008;19(7):2761–9.

    Article  CAS  Google Scholar 

  29. Murakami H, Kobayashi M, Takeuchi H, Kawashima Y. Utilization of poly(dl-lactide-co-glycolide) nanoparticles for preparation of mini-depot tablets by direct compression. J Control Release. 2000;67(1):29–36.

    Article  CAS  Google Scholar 

  30. Ekholm M, Hietanen J, Tulamo RM, Muhonen J, Lindqvist C, Kellomaki M, et al. Tissue reactions of subcutaneously implanted mixture of epsilon-caprolactone–lactide copolymer and tricalcium phosphate. An electron microscopic evaluation in sheep. J Mater Sci. 2003;14(10):913–8.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research project is supported by Mahidol University, Thailand. We thank the National Institute of Health, Department of Medical Sciences, Ministry of Public Health for the help in animal care and handling.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Norased Nasongkla.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nasongkla, N., Boongird, A., Hongeng, S. et al. Preparation and biocompatibility study of in situ forming polymer implants in rat brains. J Mater Sci: Mater Med 23, 497–505 (2012). https://doi.org/10.1007/s10856-011-4520-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10856-011-4520-3

Keywords

Navigation