Skip to main content
Log in

Gold nanoparticles developed in sol–gel derived apatite—bioactive glass composites

  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

The study is focussed on synthesis and characterisation of a new sol–gel derived composite system consisting of nanocrystalline apatite, bioactive glass and gold nanoparticles, which are of interest both for regenerative medicine and for specific medical applications of the releasable gold nanoparticles. Samples dried at 110°C and then heat treated for 30 min at 300 and 500°C were investigated by thermal analysis (DTA/TG), X-ray diffraction (XRD), UV–VIS–NIR, Fourier Transform Infrared (FTIR) spectroscopy, X-ray Photoelectron(XPS) spectroscopy, Scanning Electron Microscopy (SEM) and Transmission Electron Microscopy (TEM). Gold nanoparticles and nanocrystalline apatite are developed already after heat treatment at 300°C. XPS analysis clearly revealed the presence of both metallic and ionic gold species. The development of gold nanoparticles was evidenced by UV–VIS–NIR and TEM analysis, and their size increased from few nanometers to 25 nm by increasing the treatment temperature from 300 to 500°C. The bioactivity of the samples immersed in simulated body fluid was demonstrated by XRD and SEM results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Seidi A, Ramalingam M, Elloumi-Hannachi I, Ostrovidov S, Khademhosseini A. Gradient biomaterials for soft-to-hard interface tissue engineering. Acta Biomater. 2011;7:1441–51.

    Article  CAS  Google Scholar 

  2. Rautaray D, Mandal S, Sastry M. Synthesis of hydroxyapatite crystals using amino acid-capped gold nanoparticles as a scaffold. Langmuir. 2005;21:5185–91.

    Article  CAS  Google Scholar 

  3. Wang C-K, Chen S-H, Li W-Y, Lai C-H, Chen W-C. Bioactive glass shell growth of a Si-Na-Ca-P layer on gold nanoparticles functionalized with mercaptopropyltrimethyloxysilane-silicate-tetraethylothosilicate. Surf Rev Lett. 2009;16:37–42.

    Article  Google Scholar 

  4. Kojima C, Umeda Y, Harada A, Kono K. Preparation of near-infrared light absorbing gold nanoparticles using polyethylene glycol-attached dendrimers. Colloid Surf B. 2010;81:648–51.

    Article  CAS  Google Scholar 

  5. Lusvardi G, Malavasi G, Aina V, Bertinetti L, Cerrato G, Magnacca G, Morterra C, Menabue L. Bioactive glasses containing Au nanoparticles. Effect of calcination temperature on structure, morphology, and surface properties. Langmuir. 2010;26:10303–14.

    Article  CAS  Google Scholar 

  6. Aina V, Marchis T, Laurenti E, Diana E, Lusvardi G, Malavasi G, Menabue L, Cerrato G, Morterra C. Functionalization of sol gel bioactive glasses carrying Au nanoparticles: selective Au affinity for amino and thiol ligand groups. Langmuir. 2010;26:18600–5.

    Article  CAS  Google Scholar 

  7. Yurong C, Lian Z. Effect of thermal treatment on the microstructure and mechanical properties of gel-derived bioglasses. Mater Chem Phys. 2005;94:283–7.

    Article  Google Scholar 

  8. Fujii E, Ohkubo M, Tsuru K, Hayakawa S, Osaka A, Kawabata K, Bonhomme C, Babonneau F. Selective protein adsorption property and characterization of nano-crystalline zinc-containing hydroxyapatite. Acta Biomater. 2006;2:69–74.

    Article  Google Scholar 

  9. Kennedy LC, Bickford LR, Lewinski NA, Coughlin AJ, Hu Y, Day ES, West JL, Drezek RA. A new era for cancer treatment: gold-nanoparticle-mediated thermal therapies. Small. 2011;7:169–83.

    Article  CAS  Google Scholar 

  10. Kumar A, Ma H, Zhang X, Huang K, Jin S, Liu J, Wei T, Cao W, Zou G, Liang XJ. Gold nanoparticles functionalized with therapeutic and targeted peptides for cancer treatment. Biomaterials. 2012;33:1180–9.

    Article  CAS  Google Scholar 

  11. Fairley N, Carrick A. The casa cookbook—part I: recipes for XPS data processing. Knutsford: Acolyte Science; 2005.

    Google Scholar 

  12. Kokubo T, Kushitani H, Sakka S, Kitsugi T, Yamamuro T. Solutions able to reproduce in vivo surface-structure changes in bioactive glass–ceramic A-W3. J Biomed Mater Res. 1990;24:721–34.

    Article  CAS  Google Scholar 

  13. Bohner M, Lemaitre J. Can bioactivity be tested in vitro with SBF solution? Biomaterials. 2009;30:2175–9.

    Article  CAS  Google Scholar 

  14. Webster TJ, Ergun C, Doremus RH, Siegel RW, Bizios R. Specific proteins mediate enhanced osteoblast adhesion on nanophase ceramics. J Biomed Mater Res. 2000;51:475–83.

    Article  CAS  Google Scholar 

  15. Fu Q, Rahaman MN, Sonny Bal B, Brown RF, Day DE. Mechanical and in vitro performance of 13–93 bioactive glass scaffolds prepared by a polymer foam replication technique. Acta Biomater. 2008;4:1854–64.

    Article  CAS  Google Scholar 

  16. Fathi MH, Doost Mohammadi A. Preparation and characterization of sol–gel bioactive glass coating for improvement of biocompatibility of human body implant. Mater Sci Eng A. 2008;474:128–33.

    Article  Google Scholar 

  17. Mozafari M, Moztarzadeh F, Tahriri M. Investigation of the physico-chemical reactivity of a mesoporous bioactive SiO2-CaO-P2O5 glass in simulated body fluid. J Non-Cryst Solids. 2010;356:1470–8.

    Article  CAS  Google Scholar 

  18. Cernea M, Andronescu E, Radu R, Fochi F, Galassi C. Sol–gel synthesis and characterization of BaTiO3-doped (Bi0.5Na0.5)TiO3 piezoelectric ceramics. J Alloy Compd. 2010;490:690–4.

    Article  CAS  Google Scholar 

  19. Tamasan M, Vulpoi A, Vanea E, Simon V. Textural properties of the medical Algo clay as influenced by calcination. Appl Clay Sci. 2010;50:418–22.

    Article  CAS  Google Scholar 

  20. Chakraborty P. Metal nanoclusters in glasses as non-linear photonic materials. J Mater Sci. 1998;33:2235–49.

    Article  CAS  Google Scholar 

  21. Baia L, Muresan D, Baia M, Popp J, Simon S. Structural properties of silver nanoclusters-phosphate glass composites. Vib Spectrosc. 2007;43:313–8.

    Article  CAS  Google Scholar 

  22. Burda C, Chen X, Narayanan R, El-Sayed MA. Chemistry and properties of nanocrystals of different shapes. Chem Rev. 2005;105:1025–102.

    Article  CAS  Google Scholar 

  23. Kriventsov VV, Simakova IL, Simakov A, Smolentseva E, Castillon F, Estrada M, Vargas E, Yakimchuk EP, Ivanov DP, Aksenov DG, Andreev DV, Novgorodov BN, Kochubey DI, Fuentes S. XAFS study of a Au/Al2O3 catalytic nanosystem doped by Ce and Ce-Zr oxides. Nucl Instrum Meth A. 2009;603:185–7.

    Article  CAS  Google Scholar 

  24. Grzybkowski W. Nature and properties of metal cations in aqueous solutions. Polish J Environ Stud. 2006;15:655–63.

    CAS  Google Scholar 

  25. Goodman CM, McCusker CD, Yilmaz T, Rotello VM. Toxicity of gold nanoparticles functionalized with cationic and anionic side chains. Bioconjugate Chem. 2004;15:897–900.

    Article  CAS  Google Scholar 

  26. Liang KS, Salaneck WR, Aksay IA. X-ray photoemission studies of thin gold films. Solid State Commun. 1976;19:329–34.

    Article  CAS  Google Scholar 

  27. Roulet H, Mariot J-M, Hague CF. Size dependence of the valence bands in gold clusters. J Phys F Metal Phys. 1980;10:1025–30.

    Article  CAS  Google Scholar 

  28. Oberli L, Monot R, Mathieu HJ, Landolt D, Buttet J. Auger and X-ray photoelectron spectroscopy of small Au particles. Surf Sci. 1981;106:301–7.

    Article  CAS  Google Scholar 

  29. Mason MG. Electronic structure of supported small metal clusters. Phys Rev B. 1983;27:748–62.

    Article  CAS  Google Scholar 

  30. DiCenzo SB, Berry SD, Hartford EH Jr. Photoelectron spectroscopy of single-size Au clusters collected on a substrate. Phys Rev B. 1988;38:8465–8.

    Article  Google Scholar 

  31. Egelhoff WF Jr. Thin Ag films on Al(100). Appl Surf Sci. 1982;11–12(C):761–7.

    Google Scholar 

  32. Wertheim GK, DiCenzo SB, Buchanan DNE. Noble- and transition-metal clusters: the d bands of silver and palladium. Phys Rev B. 1986;33:5384–90.

    Article  CAS  Google Scholar 

  33. Takasu Y, Unwin R, Tesche B, Bradshaw AM, Grunze M. Photoemission from palladium particle arrays on an amorphous silica substrate. Surf Sci. 1978;77:219–32.

    Article  CAS  Google Scholar 

  34. Wertheim GK, DiCenzo SB, Buchanan DE, Bennett PA. Core electron binding energy shifts in metal clusters: tin on amorphous carbon. Solid State Commun. 1985;53:377–81.

    Article  CAS  Google Scholar 

  35. Textor M, Ruiz L, Hofer R, Rossi A, Feldman K, Spencer ND. Structural chemistry of self-assembled monolayers of octadecylphosphoric acid on tantalum oxide surfaces. Langmuir. 2000;16:3257–71.

    Article  CAS  Google Scholar 

  36. Zorn G, Gotman I, Gutmanas EY, Aladi R, Salitra G, Sukenik CN. Surface modification of Ti45Nb alloy with an alkylphosphonic acid self-assembled monolayer. Chem Mater. 2005;17:4218–26.

    Article  CAS  Google Scholar 

  37. Adolphi B, Jahne E, Busch G, Cai X. Characterization of the adsorption of ω-(thiophene-3-yl alkyl) phosphonic acid on metal oxides with AR-XPS. Anal Bioanal Chem. 2004;379:646–52.

    Article  CAS  Google Scholar 

  38. Shukla S, Seal S. Cluster size effect observed for gold nanoparticles synthesized by sol–gel technique as studied by x-ray photoelectron spectroscopy. Nanostruct Mater. 1999;11:1181–93.

    Article  CAS  Google Scholar 

  39. Simonsen ME, Sonderby C, Li Z, Sogaard EG. XPS and FT-IR investigation of silicate polymers. J Mater Sci. 2009;44:2079–88.

    Article  CAS  Google Scholar 

  40. Ishikawa T, Wakamura M, Kawase T, Kondo S. Surface characterization by x-ray photoelectron spectroscopy and Fourier transform infrared spectroscopy of calcium hydroxylapatite coated with silicate ions. Langmuir. 1991;7:596–9.

    Article  CAS  Google Scholar 

  41. Cappa CD, Smith JD, Messer BM, Cohen RC, Saykally RJ. Nature of the aqueous hydroxide ion probed by X-ray absorption spectroscopy. J Phys Chem A. 2007;111:4776–85.

    Article  CAS  Google Scholar 

  42. Heijboer WM, Battiston AA, Knop-Gericke A, Havecker M, Mayer R, Bluhm H, Schlogl R, Weckhuysen BM, Koningsberger DC, de Groot FMF. In situ soft X-ray absorption of over-exchanged Fe/ZSM5. J Phys Chem B. 2003;107:13069–75.

    Article  CAS  Google Scholar 

  43. Lenza RFS, Vasconcelos WL. Preparation of silica by sol–gel method using formamide. Mater Res. 2001;4:189–94.

    Article  CAS  Google Scholar 

  44. Gergely G, Weber F, Lukacs I, Illes L, Toth AL, Horvath ZE, Mihaly J, Balazsi C. Nano-hydroxyapatite preparation from biogenic raw materials. Cent Eur J Chem. 2010;8:375–81.

    Article  CAS  Google Scholar 

  45. Encinas-Romero MA, Aguayo-Salinas S. Synthesis and characterization of hydroxyapatite-wollastonite composite powders by sol–gel processing. Int J Appl Ceram Technol. 2008;5:401–11.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors acknowledge support from CNCSIS Romania, under PN II IDEI—PCCE 129/2008 project, and author TR from the Sectoral Operational Programme for Human Resources Development 2007-2013, co-financed by the European Social Fund, under the project number POSDRU 89/1.5/S/60189 with the title “Postdoctoral Programs for Sustainable Development in a Knowledge Based Society”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Simon.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Simon, S., Ciceo-Lucacel, R., Radu, T. et al. Gold nanoparticles developed in sol–gel derived apatite—bioactive glass composites. J Mater Sci: Mater Med 23, 1193–1201 (2012). https://doi.org/10.1007/s10856-012-4590-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10856-012-4590-x

Keywords

Navigation